

- When information is spread over multiple tables
 - Find the projects which John is working on

Employees

eid	ename
′01′	`John'
′02′	`Susan'

iects

eid	pid
′01′	`T4'
′01′	`X3'
′02′	`S2'

Combine Two Tables

e.eid	ename	p.eid	pid

Or what do we get when we do SELECT * FROM Employees, Projects;

Combine Two Tables

e.eid	ename	p.eid	pid
			<u> </u>
′01′	`John'	′01′	`T4'
'01'	`John'	′01′	`X3'
'01'	`John'	′02′	`S2'
′02′	`Susan'	′01′	`T4'
′02′	`Susan'	'01'	`X3'
'02'	'Susan'	′02′	`S2'

Or what do we get when we do SELECT * FROM Employees, Projects;

Cartesian Product

$$A = \{ a_1, a_2, a_3, a_4, ..., a_n \} B = \{ b_1, b_2, b_3, b_4, ..., b_m \}$$

A x B = { all possible pairs of $\langle a_i, b_i \rangle$ }

For example:

$$A = \{ a_1, a_2, a_3 \}, B = \{ b_1, b_2 \}, C = \{ c_1, c_2 \}$$

$$A \times B = ??$$

$$B \times C = ??$$

 $A \times B \times C = ??$

All Kinds of Joins

- ♦ Theta join: =, >, >=, <, <=, <>
 - Equi-join: =
 - Nonequi-join: >, >=, <, <=, <>
- Self join
- ♦ Inner join
 - Natural join
- Outer join
 - Left join
 - Right join
 - Full outer join

Self Join

Ages

Name	Age
'John'	48
'Susan'	45
`Amy'	32
'Bob'	45

- Find the names of the people who are older than Susan
 - older than or of the same age

INNER Join

- Eliminate rows that do not make sense
- ♦Avoid unintentional Cartesian products

SELECT * FROM Employees e INNER JOIN Projects p
ON e.eid = p.eid;

SELECT * FROM Employees e, Projects p WHERE e.eid = p.eid;

Natural Join

An inner join on all columns with matching names

SELECT * FROM Employees e INNER JOIN Projects p ON e.eid = p.eid;

SELECT * FROM Employees e NATURAL JOIN Projects p;

* Not supported in MS Access

Outer Join

- Left join (left outer join)
 - All rows of an inner join, and the remaining rows from the first table
 - E.g. Find the employees who are not working on a project
- Right join (right outer join)
 - All rows of an inner join, and the remaining rows from the second table
- Full outer join

Join Multiple Tables

SELECT fields FROM Table1, Table2, Table3 WHERE Table1.field1 = Table2.field2 AND Table2.field2 = Table3.field3;

Or

SELECT fields FROM Table1 INNER JOIN (Table2 INNER JOIN Table3 ON Table2.field2 = Table3.field3) ON Table1.field1 = Table2.field2;