CS122 Using Relational Databases and SQL Introduction to Database Design Chengyu Sun California State University, Los Angeles

Video Rental DB RID RDate CName MID CID MName Price RQty 1001 05/15/04 \$4.50 05/15/04 201 Goodfellas \$4.50 John 2 1001 05/15/04 201 John 3 Casino \$3.50 05/23/04 270 1002 Amy Casino \$3.50 1 1003 05/23/04 233 6 You've Got Mail \$4.50 Susan 1003 05/23/04 233 Susan \$4.50 Leopold Total Recall 1004 05/24/04 270 Amy \$3.50 1

Signs of Bad Design

- Redundancy
- Anomalies
 - Insert
 - Delete
 - Update

Functional Dependency (FD)

- $(A_1,A_2,...,A_n) \rightarrow (B_1,B_2,...,B_m)$
 - If two tuples have the same values of attributes $(A_1, A_2, ..., A_n)$, they must have the same values of attributes $(B_1, B_2, ..., B_m)$
- ◆Trivial FD
 - \blacksquare $(B_1, B_2, ..., B_m) \subseteq (A_1, A_2, ..., A_n)$

(RID) → (RDate, CID, CName) (CID) → (CName)

(MID) → (MName, Price)

Keys of a Relation

- ◆Key
 - \blacksquare (A₁,A₂,...,A_n) functionally determines *all* other attributes in the relation
 - Minimal
- Primary Key
 - Primary key for the Video Rental example??
- Super Key

Partial and Transitive Dependency

- ◆Partial dependency a non-key column is dependent on part of the primary key
- ◆Transitive dependency a non-key column is dependent on another nonkey column

Boyce-Codd Normal Form (BCNF)

♦ Whenever there's a non-trivial FD (A₁,A₂,...,A_n) → (B₁,B₂,...,B_m) in R, (A₁,A₂,...,A_n) is a super key of R

Player	Instrument	Teacher
Chloe	Clarinet	Fred
Beryl	Flute	David
Kaitlyn	Drums	Christina
Chloe	Flute	David
Lindsey	Flute	Michele

3NF but not BCNF

Indexes and Constraints

- ♦Indexes speed up queries
 - B-tree, R-tree, Quad-tree, Hash, Bitmap ...
- Constraints avoid human errors and speed up queries
 - NOT NULL
 - PRIMARY KEY and UNIQUE
 - FOREIGN KEY and referential integrity

Primary Key And Unique

- PRIMARY KEY
 - One or more fields
 - Implies NOT NULL
- UNIQUE
 - One or more fields
 - Does not imply NOT NULL
 - Can have more than one UNIQUE contraints

Foreign Key and Referential Integrity

- Referenced attribute(s) must be primary key or unique
- Referential integrity
 - A foreign key value is either NULL, or it must exists in the referenced table as a primary or unique key value

Create and Delete Indexes

CREATE [UNIQUE] INDEX index ON table (field [, ...])
[WITH {DISALLOW NULL | IGNORE NULL | PRIMARY}];

DROP INDEX index ON table;

- UNIQUE
- DISALLOW NULL
- **♦** IGNORE NULL
- PRIMARY

Not NULL

CREATE TABLE table (

field type,

field type NOT NULL,

field type

);

Primary Key and Unique

```
CREATE TABLE table (
field type CONSTRAINT c { PRIMARY KEY | UNIQUE },
...
);

CREATE TABLE table (
field type,
...
CONSTRAINT c { PRIMARY KEY | UNIQUE } (field [,...])
);
```

Foreign Key

```
CREATE TABLE table1 (
field type CONSTRAINT c REFRENCES table2 (field),
...
);

CREATE TABLE table1 (
...
CONSTRAINT c FOREIGN KEY (field [,...]) REFRENCES table2 (field [,...])
);
```