CS520 Web Programming

Introduction to Maven

Chengyu Sun
California State University, Los Angeles

Build

@ Preprocessing
@ Compilation

@ Postprocessing
@ Distribution

@ Deployment

What is Maven?

@ Mostly used as a build tool for Java
projects
@It is more than a build tool
= Project Object Model (POM)
= Project lifecycles
[Dependencyrnanagement
= Plugin framework
@It is a project management tool

A Simple Maven Example

pom.xml

<project>
<modelVersion>4.0.0</modelVersion>
<groupld>edu.calstatela.cs520</groupld>
<artifactld>maven-exmaple</artifactld>
<version>1.0</version>

</project>

Run:
mvn compile
mvn package

pom.xml and modelVersion

®pom.xml is a description of the project
#®modelVersion is the version of the
“grammar” of the description

Maven Coordinates

® groupld

= Name of the company, organization, team etc.,
usually using the reverse URL naming convention

®artifactld
= A unique name for the project under groupld
@® version
® packaging, default: jar
@®classifier

Maven coordinates uniquely identifies a project.

Convention Over Configuration

@ Systems, libraries, and frameworks
should assume reasonable defaults.

See the Effect POM tab of pom.xml in Eclipse for all
the "defaults”.

Default Directory Structure

®src/main/java

®src/main/resources for files that
should be placed under classpath

®src/main/webapp for web
applications

®src/test/java

®target

How Does Maven Work?

#Q: what happens when you run mvn
compile?

@A: Maven will go through each phase of
the build lifecycle up to the compile
phase, and run the operations
associated with each phase

Build Lifecycle

@ The process for building and
distributing a project

A build lifecycle consists of a number of
steps called phases.

Some Lifecycle Phases

#®validate
®compile
@®test
®package
#®deploy

http://maven.apache.org/quides/introduction/i ion-to-the-lifecycle.html#Lifecycle Reference

About Lifecycle Phases

@ Not all projects utilize all phases

Not all phases have operations
associated with them

Goals and Plugins

@ Goals, a.k.a. Mojos, are operations
provided by Maven plugins

Some Maven Plugins

®resources
®compiler
@®surefire

®jar, war

http://maven.apache.org/plugins/index.html

Example of Using a Plugin

<build><plugins><plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactld>
<version>2.3.2</version>
<executions><execution>
<id>default-compile</id>
<phase>compile</phase>
<goals>
<goal>compile</goal>
</goals>
<configuration>
<target>1.6</target>
</configuration>
</execution></executions>
</plugin></plugins></build>

About The Plugin Example

@A plugin is uniquely identified by its
coordinates just like any other project

@ Goals are associated (i.e. bound) to a
build lifecycle phase

@ The behavior of a goal can be
customized with additional parameters
in the <configuration> section

Run a Maven Build

mvn <phase>

Maven will go through each build
lifecycle phase up to the specified
phase

#1In each phase, execute the goals bound
to that phase

Run a Maven Build in Eclipse

®Need the m2e Eclipse plugin

Right click on the project then select
Run As = Maven Build ..

Give the build a name
@ Enter the phase name for Goals
#®Click Run

Why Not Just Use an IDE

@ Can your IDE do everything you want?
= Deploy a web application to a remote
server
= Generate source code from some metadata
files
= Create a zip package of selected files for
homework submission

Why Use Maven

Everybody uses it!

Common framework for project build and
management
= Project Object Model
= Build lifecycles

@ Archetype

Dependency management

Resource filtering

Archetype

An archetype is a template for a Maven project which
can be used to create new projects quickly

Example: creating a project from archetype
m maven-archetype-quickstart
» maven-archetype-webapp

#® Users can create new archetypes and publish them
through catalogs
= Main Maven archetype catalog:
http://repo.maven.apache.org/maven2/archetype-
catalog.xml

Dependency Management

@ A dependency of a project is a library
that the project depends on

Adding a dependency to a project is as
simple as adding the coordinates of the
library to pom. xm1l

#®Maven automatically downloads the
library from an online repository and
store it locally for future use

Dependency Example

<dependencies>
<dependency>
<groupld>javax.servlet</groupld>
<artifactld>javax.servlet-api</artifactld>
<version>3.0.1</version>
</dependency>
</dependencies>

@ Add a dependency to pom. xml
Add a dependency in Eclipse

Dependencies and
Repositories

Search for dependency coordinates at
http://mvnrepository.com/

Maven Central Repository -
http://repo.maven.apache.org/maven2/

Additional libraries and repositories -
https://maven.nuxeo.org/

More About Dependency
Management

@ Dependencies of a dependency are
automatically included

@ Dependency conflicts are automatically
resolved

®See CcsNs2 for example

Resource Filtering

@ Use placeholders in resource files and
replace them with actual value during
the build process

<param name="File" value="${app.dir.log}/csns2.log" />
4

<param name="File" value="F:/TEMP/csns2/csns2.log" />

Resource Filtering Example

<build>
<filters>
<filter>build.properties</filter>
</filters>
<resources>
<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>
</resource>
</resources>
</build>

Summary

@ Project Object Model (POM)
@ Coordinates

Lifecycles and phases

Plugins and goals

@ Archetype

@ Dependency management
Resource filtering

Further Readings

Free online Maven books -
http://www.sonatype.com/resources/bo
oks

