
1

CS520 Web Programming
Introduction to Maven

Chengyu Sun

California State University, Los Angeles

Build

Preprocessing

Compilation

Postprocessing

Distribution

Deployment

What is Maven?

Mostly used as a build tool for Java 
projects

It is more than a build tool

� Project Object Model (POM)

� Project lifecycles

� Dependency management

� Plugin framework

It is a project management tool

A Simple Maven Example

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>edu.calstatela.cs520</groupId>
<artifactId>maven-exmaple</artifactId>
<version>1.0</version>

</project>

pom.xml

Run:

mvn compile

mvn package

pom.xml and modelVersion

pom.xml is a description of the project

modelVersion is the version of the 

“grammar” of the description

Maven Coordinates

groupId

� Name of the company, organization, team etc., 
usually using the reverse URL naming convention

artifactId

� A unique name for the project under groupId

version

packaging, default: jar

classifier

Maven coordinates uniquely identifies a project. 



2

Convention Over Configuration

Systems, libraries, and frameworks 
should assume reasonable defaults.

See the Effect POM tab of pom.xml in Eclipse for all
the “defaults”.

Default Directory Structure

src/main/java

src/main/resources for files that 

should be placed under classpath

src/main/webapp for web 

applications

src/test/java

target

How Does Maven Work?

Q: what happens when you run mvn
compile?

A: Maven will go through each phase of 
the build lifecycle up to the compile

phase, and run the operations
associated with each phase

Build Lifecycle

The process for building and 
distributing a project

A build lifecycle consists of a number of 
steps called phases.

Some Lifecycle Phases

validate

compile

test

package

deploy

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

About Lifecycle Phases

Not all projects utilize all phases

Not all phases have operations 
associated with them



3

Goals and Plugins

Goals, a.k.a. Mojos, are operations 
provided by Maven plugins

Some Maven Plugins

resources

compiler

surefire

jar, war

http://maven.apache.org/plugins/index.html

Example of Using a Plugin

<build><plugins><plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<executions><execution>

<id>default-compile</id>
<phase>compile</phase>
<goals>

<goal>compile</goal>
</goals>
<configuration>

<target>1.6</target>
</configuration>

</execution></executions>
</plugin></plugins></build>

About The Plugin Example

A plugin is uniquely identified by its 
coordinates just like any other project

Goals are associated (i.e. bound) to a 
build lifecycle phase

The behavior of a goal can be 
customized with additional parameters 
in the <configuration> section

Run a Maven Build

Maven will go through each build 
lifecycle phase up to the specified 
phase

In each phase, execute the goals bound 
to that phase

mvn <phase>

Run a Maven Build in Eclipse

Need the m2e Eclipse plugin

Right click on the project then select 
Run As � Maven Build …

Give the build a name

Enter the phase name for Goals

Click Run



4

Why Not Just Use an IDE

Can your IDE do everything you want?

� Deploy a web application to a remote 
server

� Generate source code from some metadata 
files

� Create a zip package of selected files for 
homework submission

� …

Why Use Maven

Everybody uses it!

Common framework for project build and 
management

� Project Object Model

� Build lifecycles

Archetype

Dependency management

Resource filtering

Archetype

An archetype is a template for a Maven project which 
can be used to create new projects quickly

Example: creating a project from archetype
� maven-archetype-quickstart

� maven-archetype-webapp

Users can create new archetypes and publish them 
through catalogs

� Main Maven archetype catalog: 
http://repo.maven.apache.org/maven2/archetype-
catalog.xml

Dependency Management

A dependency of a project is a library 
that the project depends on

Adding a dependency to a project is as 
simple as adding the coordinates of the 
library to pom.xml

Maven automatically downloads the 
library from an online repository and 
store it locally for future use

Dependency Example

Add a dependency to pom.xml

Add a dependency in Eclipse

<dependencies>
<dependency>

<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.0.1</version>

</dependency>
</dependencies>

Dependencies and 
Repositories

Search for dependency coordinates at 
http://mvnrepository.com/

Maven Central Repository -
http://repo.maven.apache.org/maven2/

Additional libraries and repositories -
https://maven.nuxeo.org/



5

More About Dependency 
Management

Dependencies of a dependency are 
automatically included

Dependency conflicts are automatically 
resolved

See CSNS2 for example

Resource Filtering

Use placeholders in resource files and 
replace them with actual value during 
the build process

<param name="File" value="${app.dir.log}/csns2.log" />

<param name="File" value="F:/TEMP/csns2/csns2.log" />

Resource Filtering Example

<build>
<filters>

<filter>build.properties</filter>
</filters>
<resources>

<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>

</resource>
</resources>

</build>

Summary

Project Object Model (POM)

Coordinates

Lifecycles and phases

Plugins and goals

Archetype

Dependency management

Resource filtering

Further Readings

Free online Maven books -
http://www.sonatype.com/resources/bo
oks


