
1

CS520 Web Programming
Object-Relational Mapping with Hibernate and JPA

Chengyu Sun

California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects

So we use object-oriented languages to
write applications

We want to store some of the
application objects (a.k.a. persistent
objects)

So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
� Best performance

� Most reliable

� Widest support

Bridge between OO applications and
relational databases
� CLI and embedded SQL

� Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)

Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);

Statement stmt = c.createStatement();

ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL

SQL statements are embedded in host
language

String name;

#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

}

2

Employee – Database Table

create table employees (

id integer primary key,

name varchar(255),

supervisor integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;

String name;

Employee supervisor;

public Employee(Integer id)

{
// access database to get name and supervisor

… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {
…
PreparedStatment p;
p = connection.prepareStatment(

“select * from employees where id = ?”
);
…

}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);
…

}
}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

…
supervisor = ??

}
}

The ORM Approach

customer

employee

account

Application

Persistent Data Store

ORM tool

Oracle, MySQL, SQL Server …

Flat files, XML …

3

Hibernate and JPA

Java Persistence API (JPA)

� Annotations for object-relational mapping

� Data access API

� An object-oriented query language JPQL

Hibernate

� The most popular Java ORM library

� An implementation of JPA

Hibernate Usage

Hibernate without JPA
� API: SessionFactory, Session, Query,
Transaction

� More features

Hibernate with JPA
� API: EntityManagerFactory,
EntityManager, Query, Transaction

� Better portability

� Behaviors are better defined and documented

A Hibernate Example

Java classes
� Employee.java

JPA configuration file
� persistence.xml

Code to access the persistent objects
� EmployeeTest.java

(Optional) Logging configuration files
� log4j.properties

Java Classes

Plain Java classes (POJOs); however, it
is recommended that

� Each persistent class has an identity field

� Each persistent class implements the
Serializable interface

� Each persistent field has a pair of getter
and setter, which don’t have to be public

O/R Mapping Annotations

Describe how Java classes are mapped to
relational tables

@Entity Persistent Java Class

@Id Id field

@Basic (can be omitted) Fields of simple types

@ManyToOne
@OneToMany

@ManyToMany
@OneToOne

Fields of class types

persistence.xml

<persistence-unit>
� name

<properties>

� Database information

� Provider-specific properties

No need to specify persistent classes

4

Access Persistent Objects

EntityManagerFactory

EntityManager

Query and TypedQuery

Transaction

� A transaction is required for updates

Some EntityManager Methods

find(entityClass, primaryKey)

createQuery(query)

createQuery(query, resultClass)

persist(entity)

merge(entity)

getTransaction()

http://sun.calstatela.edu/~cysun/documentation/jpa-2.0-api/javax/persistence/EntityManager.html

Persist() vs. Merge()
Scenario Persist Merge

Object passed was
never persisted

1. Object added to persistence
context as new entity
2. New entity inserted into database
at flush/commit

1. State copied to new entity.
2. New entity added to persistence
context
3. New entity inserted into
database at flush/commit

4. New entity returned

Object was
previously
persisted, but not
loaded in this
persistence context

1. EntityExistsException thrown (or
a PersistenceException at
flush/commit)

1. Existing entity loaded.
2. State copied from object to
loaded entity
3. Loaded entity updated in
database at flush/commit

4. Loaded entity returned

Object was
previously persisted
and already loaded
in this persistence
context

1. EntityExistsException thrown (or
a PersistenceException at flush or
commit time)

1. State from object copied to
loaded entity
2. Loaded entity updated in
database at flush/commit
3. Loaded entity returned

http://blog.xebia.com/2009/03/jpa-implementation-patterns-saving-detached-entities/

A Common Scenario That
Needs Merge()

1. Load an object from database

� Open EntityManager

� Load object

� Close EntityManager

2. Save the object in HTTP session

3. Change some fields of the object

4. Save the object back to database

� Open EntityManager

� Save object

� Close EntityManager

GET

POST

The Returned Value of
Merge()

Employee e = new Employee();

e.setName(“Joe”);

entityManager.persist(e);

Employee e = new Employee();

e.setName(“Joe”);

entityManager.merge(e);

e.getId() � ??

e.getId() � ??

Java Persistence Query
Language (JPQL)

A query language that looks like SQL,
but for accessing objects

Automatically translated to DB-specific
SQL statements

select e from Employee e

where e.id = :id

� From all the Employee objects, find the
one whose id matches the given value

See Chapter 4 of Java Persistence API, Version 2.0

5

Hibernate Query Language
(HQL)

A superset of JPQL

http://docs.jboss.org/hibernate/core/4.
2/manual/en-US/html/ch16.html

Join in HQL …

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
User instructor;
…

}

id

users sections

instructor_ididusername

1 cysun

2 vcrespi

11

12

23

… Join in HQL …

Query: find all the sections taught by
the user “cysun”.

� SQL??

� HQL??

… Join in HQL …

Database tables??

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
Set<User> instructors;
…

}

… Join in HQL

Query: find all the sections for which
“cysun” is one of the instructors

� SQL??

� HQL??

Advantages of ORM

Make RDBMS look like ODBMS

Data are accessed as objects, not rows and
columns

Simplify many common operations. E.g.
System.out.println(e.supervisor.name)

Improve portability
� Use an object-oriented query language (OQL)

� Separate DB specific SQL statements from
application code

Object caching

6

SchemaExport

Part of the Hibernate Core library

Generate DDL from Java classes and
annotations

In Hibernate Examples, run Hbm2ddl
<output_file>

Basic Object-Relational
Mapping

Class-level annotations

� @Entity and @Table

Id field

� @Id and @GeneratedValue

Fields of simple types

� @Basic (can be omitted) and @Column

Fields of class types

� @ManyToOne and @OneToOne

Advanced ORM

Embedded class

Collections

Inheritance

Embedded Class

public class Address {
String street;
String city;
String state;
String zip;

}

users

id … street city state zip …

public class User {
Integer id;
String username
String password;
Address address;

}

Mapping Embedded Class

@Embeddable
public class Address {

String street;
String city;
String state;
String zip;

}

@Entity
public class User {

@Id
Integer id;
String username
String password;
@Embedded
Address address;

}

Collection of Simple Types

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

7

Mapping Element Collection

id

customers Customer_phones

Customer_id phones

@ElementCollection
Set<String> phones;

Customize Collection Table

@ElementCollection
@CollectionTable(

name = “customer_phones”,
joinColumns=@JoinColumn(name = “customer_id”)

)
@Column(name=“phone”)
Set<String> phones;

List of Simple Types

Order by property

� @OrderBy(“<property_name> ASC|DESC”)

� Simple types do not have properties

Order by a separate column

@ElementCollection

@OrderBy(“asc”)
List<String> phones;

@ElementCollection

@OrderColumn(name = “phone_order”)
List<String> phones;

Issues Related to Collections
of Object Types

Relationships (a.k.a. associations)

� one-to-many

� many-to-many

Unidirectional vs. Bidirectional

Set and List

Cascading behaviors

Types of Relationships

Many-to-Many

Many-to-One / One-to-Many

One-to-One

Many-to-Many Relationship

Each entity in E1 can
be related to many
entities in E2

Each entity in E2 can
be related to many
entities in E1

E1 E2

8

Many-to-One Relationship

Each entity in E1 can
be related to one
entities in E2

Each entity in E2 can
be related to many
entities in E1

E1 E2

One-to-One Relationship

Each entity in E1 can
be related to one
entities in E2

Each entity in E2 can
be related to one
entities in E1

E1 E2

Relationship Type Examples

Books and authors??

Books and editors??

One-To-Many Example

A customer may own multiple accounts

An account only has one owner

Bidirectional Association – OO
Design #1

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

Set<Account> accounts;

}

Unidirectional Association –
OO Design #2

public class Account {

Integer id;

Double balance;
Date createdOn;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

Set<Account> accounts;

}

9

Unidirectional Association –
OO Design #3

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

Unidirectional vs. Bidirectional

Do the three OO designs result in
different database schemas??

Does it make any difference on the
application side??

Which one should we use??

Mapping Bidirectional One-To-
Many

public class Account {

Integer id;

Double balance;
Date createdOn;

@ManyToOne
Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@OneToMany(mappedBy=“owner”)

Set<Account> accounts;

}

property

Using List

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@OneToMany(mappedBy=“owner”)

@OrderBy(“createdOn asc”)

List<Account> accounts;

}

Many-To-Many Example

A customer may own multiple accounts

An account may have multiple owners

Mapping Many-To-Many

public class Account {

Integer id;

Double balance;
Date createdOn;

@ManyToMany
Set<Customer> owners;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

@ManyToMany(mappedBy=“owners”)

Set<Account> accounts;

}

10

Customize Join Table

@ManyToMany
@JoinTable(

name = “account_owners”,
joinColumns=@JoinColumn(name = “account_id”),
inverseJoinColumns=@JoinColumn(name=“owner_id”)

)
Set<Customer> owners;

Cascading Behavior

Whether an operation on the parent object
(e.g. Customer) should be applied to the
children objects in a collection (e.g.
List<Account>)

Customer c = new Customer(“cysun”);

Account a1 = new Account();
Account a2 = new Account();

c.getAccounts().add(a1);

c.getAccounts().add(a2);

entityManager.persist(c); // will a1 and a2 be saved as well?
entityManager.remove(c); // will a1 and a2 be deleted from db??

Cascading Types in JPA

http://sun.calstatela.edu/~cysun/docum
entation/jpa-2.0-
api/javax/persistence/CascadeType.html

CascadeType Examples

@OneToMany(mappedBy=“owner”,

cascade=CascadeType.PERSIST)
List<Account> accounts;

@OneToMany(mappedBy=“owner”,

cascade={CascadeType.PERSIST, CascadeType.MERGE})
List<Account> accounts;

@OneToMany(mappedBy=“owner”,

cascade=CascadeType.ALL)
List<Account> accounts;

Inheritance

public class CDAccount extends Account {

Integer term;

}

Everything in One Table

id account_type balance created_on term

accounts

Discriminator column

11

Inheritance Type –
SINGLE_TABLE

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name=“account_type”)
@DiscrimnatorValue(“CHECKING”)
public class Account { … }

@Entity
@DiscrimnatorValue(“CD”)
public class CDAccount { … }

Table Per Subclass

id balance created_onaccounts

account_id termcd_accounts

foreign key

Inheritance Type – JOINED

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.JOINED)
public class Account { … }

@Entity
@Table(name=“cd_accounts”)
public class CDAccount { … }

Table Per Concrete Class

id balance created_on

accounts

id balance created_on term

cd_accounts

Inheritance Type –
TABLE_PER_CLASS

@Entity
@Table(name=“accounts”)
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public class Account { … }

@Entity
@Table(name=“cd_accounts”)
public class CDAccount { … }

Tips for Hibernate Mapping

Understand relational design

� Know what the database schema should
looks like before doing the mapping

Understand OO design

� Make sure the application design is object-
oriented

12

Further Readings

TopLink JPA Annotation Reference –
http://www.oracle.com/technetwork/mi
ddleware/ias/toplink-jpa-annotations-
096251.html

Pro JPA 2 by Mike Keith and Merrick
Schincariol

