
1

CS422 Principles of Database Systems
Indexes

Chengyu Sun

California State University, Los Angeles

Indexes

Auxiliary structures that speed up
operations that are not supported
efficiently by the basic file organization

A Simple Index Example

Data blocks

10 10

20

30

40

50

60

70

80

20

30

40

50

60

70

80

Index blocks

About Indexes

Index entry

� <key, rid>

� <key, list of rid>

� Data record

The majority of database indexes are
designed to reduce disk access

Organization of Index Entries

Tree-structured

� B-tree, R-tree, Quad-tree, kd-tree, …

Hash-based

� Static, dynamic

Other

� Bitmap, VA-file, …

From BST to BBST to B

Binary Search Tree

� Worst case??

Balance Binary Search Tree

� E.g. AVL, Red-Black

B-tree

� Why not use BBST in databases??

2

B-tree (B+-tree) Example

100

30 150120

3530 101100 110 130120 156150 17953 11

root

internal

nodes

leaf

nodes

B-tree Properties

Each node occupies one block

Order n

� n keys, n+1 pointers

Nodes (except root) must be at least half full
� Internal node: (n+1)/2 pointers

� Leaf node: (n+1)/2 pointers

All leaf nodes are on the same level

B-tree Operations

Search

Insert

Delete

B-tree Insert

Find the appropriate leaf

Insert into the leaf

� there’s room � we’re done

� no room

� split leaf node into two

� insert a new <key,pointer> pair into leaf’s parent node

Recursively apply previous step if necessary
� A split of current ROOT leads to a new ROOT

B-tree Insert Examples

(a) simple case

� space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root

HGM Notes

(a) Insert key = 32 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3
2

HGM Notes

3

(b) Insert key = 7 n=3

3 5 1
1

3
0

3
1

3
0

1
0
0

3 5

7

7

HGM Notes

(c) Insert key = 160 n=3

1
0
0

1
2
0

1
5
0

1
8
0

1
5
0

1
5
6

1
7
9

1
8
0

2
0
0

1
6
0

1
8
0

1
6
0

1
7
9

HGM Notes

(d) New root, insert 45 n=3

1
0

2
0

3
0

1 2 3 1
0

1
2

2
0

2
5

3
0

3
2

4
0

4
0

4
5

4
0

3
0new root

HGM Notes

B-tree Delete

Find the appropriate leaf

Delete from the leaf
� still at least half full � we’re done

� below half full – coalescing
� borrow a <key,pointer> from one sibling node, or

� merge with a sibling node, and delete from a parent
node

Recursively apply previous step if necessary

B-tree Delete in Practice

Coalescing is usually not implemented
because it’s too hard and not worth it

Static Hash Index

record

hash

function
bucket

blocks overflow blocks
bucket

directory

Hash Index

4

Hash Function

A commonly used hash function: K%B

� K is the key value

� B is the number of buckets

Static Hash Index Example …

4 buckets

Hash function: key%4

2 index entries per bucket block

… Static Hash Index Example

record

key%4

bucket blocksbucket

directory

3

2

1

0

Insert the records with the following keys: 4,
3, 7, 17, 22, 10, 25, 33

Dynamic Hashing

Problem of static hashing??

Dynamic hashing

� Extendable Hash Index

Extendable Hash Index …

Maximum 2M buckets

� M is maximum depth of index

Multiple buckets can share the same
block

Inserting a new entry to a block that is
already full would cause the block to
split

… Extendable Hash Index

Each block has a local depth L, which

means that the hash values of the
records in the block has the same
rightmost L bit

The bucket directory keeps a global
depth d, which is the highest local

depth

5

Extendable Hash Index
Example

M=4 (i.e. could have at most 16

buckets)

Hash function: key%24

2 index entries per block

Insert 8, 11, 4, 14

Extendable Hashing (I)

L=0

1000

1011

insert 8 (i.e. 1000)

Insert 11 (i.e. 1011)

Bucket directory

d=0

L=0d=0

insert 4 (i.e. 0100)

Bucket blocks

Extendable Hashing (II)

1000

0100

L=1

1011 L=1

Bucket directory Bucket blocks

0d=1

1

insert 14 (i.e. 1110)

Extendable Hashing (III)

1000

0100

L=2

1110 L=2

Bucket directory Bucket blocks

00d=2

10

01

11

1011 L=1

Readings

Textbook Chapter 21.1 – 21.4

