CS422 Principles of Database Systems

Concurrency Control

Chengyu Sun
California State University, Los Angeles

ACID Properties of DB
Transaction

% Atomicity

Consistency
#Isolation

Durability

Need for Concurrent Execution

#Fully utilize system resources to
maximize performance

#Enhance user experience by improving
responsiveness

Problem of Concurrent

Transactions ...
items
id name price
1 milk 2.99
2 beer 6.99

Transaction #1:

-- MIN
select min(price) from items;
-- MAX
select max(price) from items;

... Problem of Concurrent
Transactions

Transaction #2:

-- DELETE

delete from items;

-- INSERT

insert into items values (3, ‘water’, 0.99);

Consider the interleaving of T1 and T2:

MIN, DELETE, INSERT, MAX

Concurrency Control

#Ensure the correct execution of
concurrent transactions

Transaction

start transaction;

select balance
from accounts
where id=1;

update accounts
set balance=balance-100
where id=1;

update accounts
set balance=balance+100
where id=2;

commit;

rl(x)lrl(x)lwl(x)lrl(Y)lwl(Y)

Schedule

%A schedule is the interleaving of the
transactions as executed by the DBMS

#Example:
Two transactions

Tyt r100,W1(x),r1(y),W4(Y)
Tyt 1Y), Wa(y),Wa(X)

One possible schedule:
r1 (X)W1 (X) 120y), W), 1 (y), Wiy), Wo(X)

Serial Schedule

A serial schedule is a schedule in which
the transactions are not interleaved

#Example:

rl(X)IW1(X)rr1(Y)rW1(Y),"2(Y):W2(Y):W2(X)
and

ra(Y), Way), W (X) F1 (%), W(X), r1(Y),Wi(y)

Serializable Schedule

A serializable schedule is a schedule
that produces the same result as some
serial schedule

%A schedule is correctif and only if it is
serializable

Example: Serializable
Schedules

Are the following schedules
serializable??

rl(x)lwl(x)lrZ(Y)IWZ(Y)Irl(Y)lwl(Y)lWZ(X)
rl(x)lwl(x)er(Y)lrl(Y)IWZ(Y)le(Y)IWZ(X)

rl(x)lwl(x)lrl(Y)lwl(Y)lrZ(Y)IWZ(Y)IWZ(X)

How do we check if two schedules produce the same results?

Conflicting Operations

#Two operations confiictif the order in
which they are executed can produce
different results

= Write-write conflict, e.g. w, (x) and w, (x)

= Read-write (or write-read) conflict, e.g.
ry(y) and w, (y)

Precedence Graph of Schedule
S

#The nodes of the graph are transactions

T

#There is an arc from node T, to node T,
if there are two conflicting actions g,
and a;, and a, proceeds a; in S

Example: Precedence Graph

1100, W1 (%), 12(Y), F1(y), Wa(y), W1 (Y), Wa(X)
1100, W1 (), 11(Y),W1(Y),F2(Y),Way), Wa(X)

RO

Determine Serializablility

A schedule is serializable if its
precedence graph is acyclic

Scheduling
Ti ri00, w00, 10, W@, ..
T~ schedule
A2 WY, e 1,00, W00, F(A), ...

2 Scheduler

ri(A), Wi(X), 1i(B), ...

Locking

#Produce serializable schedules using
locks

#Lock
= lock () — returns immediately if the lock is

available or is already owned by the
current thread/process; otherwise wait

= unlock () — release the lock, i.e. make
the lock available again

Synchronization Using Locks

Lock lock;
lock.lock(); lock.lock();
// execute /[execute
// some txn // another txn
lock.unlock(); lock.unlock();
Thread 1 Thread 2

Simple Lock Implementation
in Java

public class Lock {

private long value = -1;

public void lock()
long threadId = Thread.currentThread().getId();
if(value == threadId) return;
while(value != -1) wait(5000);
lock = threadld;

}

public void unlock() { value = -1; }

b

Is there anything wrong with this implementation??

Life Cycle of a Java Thread

http://www.uml-diagrams.org/examples/java-6-thread-state-machine-
diagram-example.html

Wait() and Notify()

#Methods of the Object class
#wait () and wait (long timeout)
= Thread becomes not runnable

= Thread is placed in the wait set of the
object

#notify() and notifyAll ()

= Awake one or all threads in the wait set,
i.e. make them runnable again

Basic Locking Scheme

A transaction must acquire a lock on
some data before performing any
operation on it
= E.g. 13(X), 11 (X), ul; (X), 1(X),Wo(x), uly(x)

#Problem: concurrent reads are not
allowed

Shared Locks and Exclusive
Locks

Multiple transactions can each hold a
shared lock on the same data

#1If a transaction holds an exclusive lock
on some data, no other transaction can
hold any kind of lock on the same data

#Example:
sy (3), 71 (x), X1 (¥), W1 (y),512(%), Fo(X),uly (Y),S1(y), ra(Y)

About Locking and Schedule

* T2 r(Xx),w,(X)
*T,: 1y (x),w,(X)
Invalid Schedule:
sly(x),r1(x), Sk (x),r2(x),x13(X), W1 (X), ...
Lock upgrade:

$1(3),11(X),515(%), 720, Ul(X), 311 (X), W1 (X), -

Example: Releasing Locks Too
Early

#Is the following schedule serializable??

8133, r1(3),ul; (), X1(x), Wo(X), Xl5(y), W), ulo(X), uly(y),
Xl3(y),wy(y),uly(y)

Two-Phase Locking Protocol
(2PL)

%A shared lock must be acquired before
reading

A exclusive lock must be acquired
before writing

#1In each transaction, a/l lock requests
proceed all unlock requests

Example: 2PL

#\Why the following schedule is not
possible under 2PL??

S13(3),r1(3),ul; (), X1,(x), Wo(X), Xl5(y), W), ulo(x), uly(y),
Xl3(y),wy(y),uly(y)

2PL Schedules

=)

Serializable

#: Show a schedule that is 2PL but not serial
2 Show a schedule that is serializable but not 2PL

The Recoverability Problem

Serializability problem

= Ensure correct execution of Ty,..., T, when
all transactions successfully commit

#Recoverability problem

= Ensure correct execution of Ty,..., T, when
some of the transactions abort

Example: Unrecoverable
Schedule ...

#Is the following schedule serializable??
#1Is the following schedule 2PL??

W1(X),12(X),Wa(X)

. Example: Unrecoverable
Schedule

% But what if T2 commits but T1 aborts?

Wl(X)IrZ(X)IWZ(X)ICZIal

Recoverable Schedule

%1n a recoverable schedule, each
transaction commits only after each
transaction from which it has read
committed

Serializable and Recoverable

(1)

/ \
| serializable | recoverable
\

ACR Schedules

Cascading rollback
n Wy (X), W, (y),Wa(X),r5(Y),a,

A schedule avoids cascading rollback
(ACR) if transactions only read values
written by committed transactions

Serializable and Recoverable

(II)

e

/
\ serializable

— T—

recoverable

Strict 2PL

2PL

&

A transaction releases all write-related
locks (i.e. exclusive locks) after the
transaction is completed
= After <COMMIT,T> or <ABORT,T> is

flushed to disk

= After <COMMIT,T> or <ABORT,T> is
created in memory (would this work??)

Example: Strict 2PL

% Why the following schedule is not
possible under Strict 2PL??

WI(X)IrZ(X)IWZ(X)ICZIC1

Serializable and Recoverable
(III)

-

| serializable
\

\

Other Lock Related Issues

#Phantoms
#Lock granularity
#Lock and SQL Isolations Levels

Problem of Phantoms

#\We can regulate the access of existing
resources with locks, but how about
new resources (e.g. created by
appending new file blocks or inserting
new records)??

Handle Phantoms

#Lock “end of file/table”

Lock Granularity

fewer locks but less concurrency

record block table

more locks but better concurrency

SQL Isolation Levels

Isolation Level Lock Usage

slocks held to completion;

Serializable slock on eof

Repeatable read slocks held to completion;
no slock on eof

Read committed slocks released early;
no slock on eof

Read uncommitted No slock

xlocks are always held to completion

Alternative Locking Scheme —
Multiversion Locking

#Each version of a block is time-stamped
with the commit time of the transaction
that wrote it

#When a read-only transaction requests
a value from a block, it reads from the
block that was most recently committed
at the time when this transaction began

How Multiversion Locking
Works

Ty: wy(by), wy(by)
Tyt Wa(by), wy(by)
T3t r3(by), r3(by)
Tt Wa(by)

Wi(by),Wi(b,),C1,Wy(by),r3(by),Wa(bs,), €4 r3(by),C5,Wo(b2), €,

Which version of b; and b, does T; read??

About Multiversion Locking

#Read-only transactions do not need to
obtain any lock, i.e. never wait
#Implementation: use log to revert the

current version of a block to a previous
version

Deadlock

*®T,0 wy(x),wy(y)
®T, wy(y),wa(X)

X100, (%), X(Y), Wa(y), -

Necessary Conditions for
Deadlock

Mutual exclusion
#Hold and wait
#No preemption
Circular wait

Handling Deadlocks

#Deadlock prevention
Deadlock avoidance
Deadlock detection

Resource Numbering

#Impose a total ordering of all shared
resources

A process can only request locks in
increasing order

% Why the deadlock example shown
before can no longer happen??

About Resource Numbering

A deadlock prevention strategy
#Not suitable for databases

Wait-Die

#Suppose T, requests a lock that
conflicts with a lock held by T,

= If T, is older than T,, then T, waits for the
lock
= If T, is newer than T,, T, aborts (i.e.
“dies”)
#® Why does this strategy work??

About Wait-Die

A deadlock avoidance strategy (not
deadlock detection as the textbook
says)

#Transactions may be aborted to avoid
deadlocks

Wait-For Graph

#Each transaction is a node in the graph
#An edge from T, to T, if T, is waiting
for a lock that T, holds

#A cycle in the graph indicates a
deadlock situation

About Wait-for Graph

A deadlock detection strategy

Transactions can be aborted to break a cycle
in the graph

4 Difficult to implement in databases because
transaction also wait for buffers
= For example, assume there are only two buffer

pages
¢ Ty xly(x), pin(by)
¢ Ty pin(b,), pin(bs), Xl5(X)

Readings

#Textbook Chapter 14.4-14.6
% SimpleDB source code

= simpledb.tx

= simpledb.tx.concurrency

10

