CS422 Principles of Database Systems

Failure Recovery

Chengyu Sun
California State University, Los Angeles

ACID Properties of DB
Transaction

Atomicity

Consistency
@ [solation

Durability

Failure Recovery

#Ensure atomicity and durability despite
system failures

start transaction;
select balance from accounts where id=1;
update accounts set balance=balance-100
System crash where 1d=1;
_—
update accounts set balance=balance+100
where 1d=2;
System crash commit;
_—

Failure Model

System crash
= CPU halts
= Data in memory is lost
» Data on disk is OK

#Everything else

Logging

#Log
= A sequence of /log records
= Append only

What Do We Log

Transaction Log

start transaction;

select balance
from accounts
where id=1;

update accounts
set balance=balance-100
where id=1;

update accounts
set balance=balance+100
where id=2;

commit;

??

Log Records in SimpleDB

Record Type Transaction #

|

<START, 27>
<SETINT, 27, accounts.tbl, 0, 38, 1000, 900>
<SETINT, 27, accounts.tbl, 2, 64, 10, 110>

<COMMI Ty o P I

File Name Block # Posifion Old Value New Value

General Notation for Log
Records

<ip

-<START, T>
»<UPATE, T, X, v,, v,/ >
% <COMMIT, T>

<ABORT, T>

<y

Recover from System Crash

#Remove changes made by uncommitted
transactions — Undo

#Reapply changes made by committed
transactions — Redo

Recover with Undo Only

Assumption: all changes made by
committed transactions have been
saved to disk

Example: Create Undo
Logging Records

Transaction Log

Start Transaction; | ——— | <START, T>

Write(X, v,) | ——— | <UPDATE, T, X, v,>

Write(Y, v,) | | <UPDATE, T, Y, v,>

Commit; i <COMMIT, T>

About Logging

#Undo logging records do not need to
store the new values

#The key of logging is to decide when to
flush to disk
= The changes made by the transaction
= The log records

Example: Flushing for Undo
Recovery
Order the actions, including F1ush (x) and

Flush (<log>), into a sequence that allows
Undo Recovery

Transaction Log
Start Transaction; <START, T>
Write(X, v,") <UPDATE, T, X, v,>
Write(Y, v,") <UPDATE, T, Y, v,>
Commit; <COMMIT, T>

Order Flush(X) and
Flush(<UPDATE,X>) for Undo

% Consider an incomplete transaction
= (a) Both X and <UPDATE,X> are written to
disk
= (b) X is written to disk but not
<UPDATE,X>

= (C) <UPDATE,X> is written to disk but not
X

= (d) Neither is written to disk

Write-Ahead Logging

A modified buffer can be written to disk
only after all of its update log records
have been written to disk

Implement Write-Ahead
Logging

#Each log record has a unique id called
log sequence number (LSN)

Each buffer page keeps the LSN of the
log record corresponding to the latest
change

Before a buffer page is flushed, notify
the log manager to flush the log up to
the buffer’'s LSN

Order Flush(<COMMIT,T>) for
Undo

<COMMIT,T> cannot be written to disk
before new value of X is written to disk

Commit statement cannot return before
<COMMIT, T> is written to disk

Undo Logging

#Write <UPDATE,T,X,v,> to disk before
writing new value of X to disk

#Write <COMMIT,T> after writing all
new values to disk

#COMMIT returns after writing
<COMMIT, T> to disk

Undo Recovery

Scan the log
» Forward or backward??

<COMMIT,T>: add T to a list of committed
transactions

@ <UPDATE,T X,v,>: if T is not in the lists of
committed transactions, restore X’s value to
VX

Undo Logging and Recovery
Example

Consider two transactions T, and T,
= T, updates X and Y
= T, updates Z

#Show a possible sequence of undo
logging

Discuss possible crushes and recoveries

About Undo Recovery

#No need to keep the new value

#Scan the log once for recovery

#COMMIT must wait until all changes are
flushed

[dempotent — recovery processes can
be run multiple times with the same
result

Recover with Redo Only

@ Assumption: none of the changes made
by uncommitted transactions have been
saved to disk

Example: Flushing for Redo
Recovery
Order the actions, including F1ush (X) and

Flush (<log>), into a sequence that allows
Redo Recovery

Transaction Log
Start Transaction; <START, T>
Write(X, v,) <UPDATE, T, X, v,">
Write(Y, v,) <UPDATE, T, Y, v,">
Commit; <COMMIT, T>

Redo Logging

#Write <UPDATE,T,X,v,/> and
<COMMLIT, T> to disk before writing any
new value of the transaction to disk

COMMIT returns after writing
<COMMIT, T> to disk

Redo Recovery

#Scan the log to create a list of
committed transactions
#Scan the log again to replay the

updates of the committed transactions
» Forward or backward??

About Redo Recovery

<ip

Combine Undo and Redo —

-A transaction must keep all the blocks it
needs pinned until the transaction

completes — increases buffer contention

Undo/Redo Logging

#Write <UPDATE,T,X,v,,v,/> to disk
before writing new value of X to disk

#COMMIT returns after writing
<COMMIT, T> to disk

Undo/Redo Recovery

#Stage 1: undo recovery
#Stage 2: redo recovery

Advantages of Undo/Redo

#Vs. Undo??
#Vs. Redo??

Checkpoint

#Log can get very large

A recovery algorithm can stop scanning
the log if it knows

= All the remaining records are for completed
transactions

= All the changes made by these transactions
have been written to disk

Quiescent Checkpointing

#Stop accepting new transactions

#Wait for all existing transactions to
finish

#Flush all dirty buffer pages

#Create a <CHECKPOINT> log record

#Flush the log

#Start accepting new transactions

Nonquiescent Checkpointing

#Stop accepting new transactions

#Let Ty,..., T be the currently running
transactions

#Flush all modified buffers

Write the record <NQCKPT, T,,...,T,> to
the log

Start accepting new transactions

Quiescent vs. Nonquiescent

Quiescent Nonguiescent
<START, 0> <START, 0>
.;START, 1> .;START, 1>
<COMMIT, 0> <NQCHPT, 0, 1>
<START, 2>
<COMMIT, 1>

<CHPT> <COMMIT, 0>
<START, 2>

<COMMIT, 1>

Example: Nonquiescent
Checkpoint

#Using Undo/Redo Recovery

<START, 0>

<WRITE, 0, A, V,, V,">
<START, 1>

<START, 2>
<COMMIT, 1>
<WRITE, 2, B, vy, Vp'>
<NQCKPT, 0, 2>
<WRITE, 0, C, v, v.>
<COMMIT, 0>
<START, 3>

<WRITE, 2, D, vg, V4>
<WRITE, 3, E, Vg, Vo>

About Nonquiescent
Checkpointing

Do not need to wait for existing
transactions to complete

But why do we need to stop accepting
new transactions??

#Recovery algorithm may stop at
= <NQCKPT> if all {T,...,T,} committed, or

» <START> of the earliest uncommitted
transaction in {Ty,..., T,}

Readings

Textbook
= Chapter 13.1-13.3
= Chapter 14.1-14.3
#SimpleDB source code
= simpledb.log
= simpledb.tx
= simpledb.txt.recovery

