
1

CS422 Principles of Database Systems
Failure Recovery

Chengyu Sun

California State University, Los Angeles

ACID Properties of DB
Transaction

Atomicity

Consistency

Isolation

Durability

Failure Recovery

Ensure atomicity and durability despite
system failures

start transaction;

select balance from accounts where id=1;

update accounts set balance=balance–100

where id=1;

update accounts set balance=balance+100

where id=2;

commit;

System crash

System crash

Failure Model

System crash

� CPU halts

� Data in memory is lost

� Data on disk is OK

Everything else

Logging

Log

� A sequence of log records

� Append only

What Do We Log

start transaction;

select balance

from accounts

where id=1;

update accounts

set balance=balance–100

where id=1;

update accounts

set balance=balance+100

where id=2;

commit;

Transaction Log

??

2

Log Records in SimpleDB

<START, 27>

<SETINT, 27, accounts.tbl, 0, 38, 1000, 900>

<SETINT, 27, accounts.tbl, 2, 64, 10, 110>

<COMMIT, 27>

Record Type Transaction #

File Name Block # Position Old Value New Value

General Notation for Log
Records

<START, T>

<UPATE, T, X, vx, vx’ >

<COMMIT, T>

<ABORT, T>

Recover from System Crash

Remove changes made by uncommitted
transactions – Undo

Reapply changes made by committed
transactions – Redo

Recover with Undo Only

Assumption: all changes made by
committed transactions have been
saved to disk

Example: Create Undo
Logging Records

Transaction

Start Transaction;

Write(X, vx’)

Write(Y, vy’)

Commit;

Log

<START, T>

<UPDATE, T, X, vx>

<UPDATE, T, Y, vy>

<COMMIT, T>

About Logging

Undo logging records do not need to
store the new values

� Why??

The key of logging is to decide when to
flush to disk

� The changes made by the transaction

� The log records

3

Example: Flushing for Undo
Recovery

Order the actions, including Flush(X) and
Flush(<log>), into a sequence that allows

Undo Recovery

Transaction

Start Transaction;
Write(X, vx’)
Write(Y, vy’)
Commit;

Log

<START, T>
<UPDATE, T, X, vx>
<UPDATE, T, Y, vy>
<COMMIT, T>

Order Flush(X) and
Flush(<UPDATE,X>) for Undo

Consider an incomplete transaction

� (a) Both X and <UPDATE,X> are written to
disk

� (b) X is written to disk but not
<UPDATE,X>

� (c) <UPDATE,X> is written to disk but not
X

� (d) Neither is written to disk

Write-Ahead Logging

A modified buffer can be written to disk
only after all of its update log records
have been written to disk

Implement Write-Ahead
Logging

Each log record has a unique id called
log sequence number (LSN)

Each buffer page keeps the LSN of the
log record corresponding to the latest
change

Before a buffer page is flushed, notify
the log manager to flush the log up to
the buffer’s LSN

Order Flush(<COMMIT,T>) for
Undo

<COMMIT,T> cannot be written to disk
before new value of X is written to disk

Commit statement cannot return before
<COMMIT,T> is written to disk

Undo Logging

Write <UPDATE,T,X,vx> to disk before
writing new value of X to disk

Write <COMMIT,T> after writing all
new values to disk

COMMIT returns after writing
<COMMIT,T> to disk

4

Undo Recovery

Scan the log

� Forward or backward??

<COMMIT,T>: add T to a list of committed
transactions

<UPDATE,T,X,vx>: if T is not in the lists of
committed transactions, restore X’s value to
vx

Undo Logging and Recovery
Example

Consider two transactions T1 and T2

� T1 updates X and Y

� T2 updates Z

Show a possible sequence of undo
logging

Discuss possible crushes and recoveries

About Undo Recovery

No need to keep the new value

Scan the log once for recovery

COMMIT must wait until all changes are
flushed

Idempotent – recovery processes can
be run multiple times with the same
result

Recover with Redo Only

Assumption: none of the changes made
by uncommitted transactions have been
saved to disk

Example: Flushing for Redo
Recovery

Order the actions, including Flush(X) and
Flush(<log>), into a sequence that allows

Redo Recovery

Transaction

Start Transaction;
Write(X, vx’)
Write(Y, vy’)
Commit;

Log

<START, T>
<UPDATE, T, X, vx’>
<UPDATE, T, Y, vy’>
<COMMIT, T>

Redo Logging

Write <UPDATE,T,X,vx’> and
<COMMIT,T> to disk before writing any
new value of the transaction to disk

COMMIT returns after writing
<COMMIT,T> to disk

5

Redo Recovery

Scan the log to create a list of
committed transactions

Scan the log again to replay the
updates of the committed transactions

� Forward or backward??

About Redo Recovery

A transaction must keep all the blocks it
needs pinned until the transaction
completes – increases buffer contention

Combine Undo and Redo –
Undo/Redo Logging

Write <UPDATE,T,X,vx,vx’> to disk
before writing new value of X to disk

COMMIT returns after writing
<COMMIT,T> to disk

Undo/Redo Recovery

Stage 1: undo recovery

Stage 2: redo recovery

Advantages of Undo/Redo

Vs. Undo??

Vs. Redo??

Checkpoint

Log can get very large

A recovery algorithm can stop scanning
the log if it knows

� All the remaining records are for completed
transactions

� All the changes made by these transactions
have been written to disk

6

Quiescent Checkpointing

Stop accepting new transactions

Wait for all existing transactions to
finish

Flush all dirty buffer pages

Create a <CHECKPOINT> log record

Flush the log

Start accepting new transactions

Nonquiescent Checkpointing

Stop accepting new transactions

Let T1,…,Tk be the currently running
transactions

Flush all modified buffers

Write the record <NQCKPT, T1,…,Tk> to
the log

Start accepting new transactions

Quiescent vs. Nonquiescent

<START, 0>
…
<START, 1>
…
<COMMIT, 0>
…
<COMMIT, 1>
<CHPT>
<START, 2>
…

<START, 0>
…
<START, 1>
…
<NQCHPT, 0, 1>
<START, 2>
…
<COMMIT, 0>
…
<COMMIT, 1>
…

Quiescent Nonquiescent

Example: Nonquiescent
Checkpoint

Using Undo/Redo Recovery

<START, 0>
<WRITE, 0, A, va, va’>
<START, 1>
<START, 2>
<COMMIT, 1>
<WRITE, 2, B, vb, vb’>
<NQCKPT, 0, 2>
<WRITE, 0, C, vc, vc’>
<COMMIT, 0>
<START, 3>
<WRITE, 2, D, vd, vd’>
<WRITE, 3, E, ve, ve’>

About Nonquiescent
Checkpointing

Do not need to wait for existing
transactions to complete

But why do we need to stop accepting
new transactions??

Recovery algorithm may stop at

� <NQCKPT> if all {T1,…,Tk} committed, or

� <START> of the earliest uncommitted
transaction in {T1,…,Tk}

Readings

Textbook

� Chapter 13.1-13.3

� Chapter 14.1-14.3

SimpleDB source code

� simpledb.log

� simpledb.tx

� simpledb.txt.recovery

