
1

CS422 Principles of Database Systems
Stored Procedures and Triggers

Chengyu Sun

California State University, Los Angeles

Stored Procedures

User-created functions that are stored
in the database just like other schema
elements

Procedure vs. Function

� A procedure does not return any value,
while a function does

� In PostgreSQL, a procedure is simply a
function that returns void

Example: Hello World

create function hello() returns void as $$
begin

raise notice 'Hello world in PL/pgSQL';
end;
$$ language plpgsql;

Example: Add10

create function add10(a integer) returns integer as $$
declare

b integer;
begin

b := 10;
return a + b;

end;
$$ language plpgsql;

Procedural Language (PL)

A programming language for writing
stored procedures

Usually based on some existing
language like SQL, Java, C#, Perl,
Python …

� E.g. PL/SQL, PL/Java, PL/Perl …

Why Use Stored Procedures?

Performance
� compiled and optimized code

� Save communication overhead

Security
� Access control

� Less data transferred over the wire

Simplify application code

Triggers for data integrity

2

Why Not To Use Stored
Procedures?

Portability

PL are generally more difficult to
develop and maintain than conventional
programming languages

� Less language features

� Less tool support

PostgreSQL PL/pgSQL

SQL + things you would expect from a
conventional programming language:

� Variables and types

� Control flow statements

� Functions

http://www.postgresql.org/docs/9.1/int
eractive/plpgsql.html

Elements of a Programming
Language

Comments

Literals

Variables and Types

Operators and expressions

Statements

� Special statements, e.g. input and output

Functions

Classes

Packages

Elements of PL/pgSQL

Comments
Literals

Variables and types
Operators and expression

Statements
Functions

Classes
Packages

Same as in SQL

Mostly the same as in SQL, with
a few special types and operators

Not supported

Basic Function Syntax

CREATE [OR REPLACE] FUNCTION name (parameters)
RETURNS type AS $$

DECLARE
declarations

BEGIN
statements

END;
$$ LANGUAGE plpgsql;

DROP FUNCTION name (argtype [, ...]);

Examples: Basics

hello()

add10()

Implement a function that takes two
integer parameters and displays the
sum

3

Basic Syntax and Output

Variable declaration

The assignment operator :=

RAISE

� Levels: DEBUG, LOG, INFO, NOTICE,
WARNING, EXCEPTION

� Format output with %

� http://www.postgresql.org/docs/9.1/intera
ctive/plpgsql-errors-and-messages.html

Naming Conventions

We want to avoid name conflicts among
variables, tables, and columns

A simple naming convention:

� Prefix parameters with p_

� Prefix local variable with l_

� Prefix package global variable with g_

Examples: Statements

Implement a function that returns the
name of a student given the student’s
id; output a warning message if no
student is found

Implement a function that calculates
factorial

SELECT…INTO

SELECT result must be a single row.

SELECT select_list INTO variable_list
FROM table_list
[WHERE condition]
[ORDER BY order_list];

Branch Statement

NOTE: don’t forget the semicolon (;) after
END IF.

IF condition1 THEN
statements1

ELSIF condition2 THEN
statements2

ELSE
statements3

END IF;

Loop Statements

LOOP
statements
EXIT WHEN condition;
statements

END LOOP;

WHILE condition LOOP
statements

END LOOP;

FOR loop_variable IN [REVERSE]
lower_bound..upper_bound LOOP

statements
END LOOP;

4

Examples: Types

Implement a function that randomly
returns two student records

Special Types

Each table defines a type

%ROWTYPE

%TYPE

SetOf

Cursor

Examples: Cursor

Implement a function that randomly
returns 20% of the students

Cursor

An iterator for a collection of records

We can use a cursor to process the
rows returned by a SELECT statement

Using Cursors

Declaration
� Unbound cursor: refcursor

� Bound cursor: cursor for <query>

OPEN

FETCH

CLOSE

Cursor - Open

OPEN cursor [FOR query]

The query is executed

The position of the cursor is before the
first row of the query results

5

Cursor - Fetch

FETCH cursor INTO target

� Move the cursor to the next row

� Return the row

� A special variable FOUND is set to true

Cursor - Fetch

FETCH cursor INTO target

� Move the cursor to the next row

� Return the row

� A special variable FOUND is set to true

Cursor - Fetch

If there is no next row
� target is set to NULL(s)

� The special variable FOUND is set to false

Cursor - Close

CLOSE cursor;

Query FOR Loop

FOR target IN query LOOP
statements

END LOOP;

About PL Programming

It’s just programming like you always do

Debug code one small piece at a time

Ask “How to do X” questions in the class
forum

Avoid re-implementing SQL

� For example, to compute max(price), use SELECT
MAX(price) instead of using a cursor to iterate
through all rows

6

Triggers

Procedures that are automatically
invoked when data is changed, e.g.
INSERT, DELETE, and UPDATE.

Common use of triggers

� Enforcing data integrity constraints

� Auditing

� Replication

Trigger Example

Create a trigger that audit the changes
to the grades in the enrollment table

create table grade_changes (
enrollment_id integer,
old_grade_id integer,
new_grade_id integer,
timestamp timestamp

);

Trigger Example: Trigger

create trigger grade_audit
after update
on enrollment
for each row
execute procedure grade_audit();

Trigger Syntax

CREATE TRIGGER name
{ BEFORE | AFTER } { event [OR ...] }
ON table
[FOR EACH { ROW | STATEMENT }]
EXECUTE PROCEDURE funcname (arguments);

DROP TRIGGER name ON table;

Triggering Events

INSERT

DELETE

UPDATE

Before or After

BEFORE: trigger fires before the

triggering event

AFTER: trigger fires after the event

7

Statement Trigger vs. Row
Trigger

Statement Trigger

� Default

� Fires once per statement

Row Trigger
� FOR EACH ROW

� Fires once per row

Trigger Example: Function

create or replace function grade_audit()
returns trigger as $$

begin
if new.id = old.id and new.grade_id <> old.grade_id then

insert into grade_changes values (
new.id, old.grade_id, new.grade_id,
current_timestamp);

end if;
return null;

end;
$$ language plpgsql;

About Trigger Functions

No parameters

Return type must be trigger

Special variables
� NEW, OLD

� Others:
http://www.postgresql.org/docs/9.1/intera
ctive/plpgsql-trigger.html

Return Value of a Trigger
Function

Statement triggers and after-row
triggers should return NULL

Before-row trigger can return NULL to

skip the operation on the current row

For before-row insert and update
triggers, the returned row becomes the
row that will be inserted or will replace
the row being updated

Examples: Enforce Data
Integrity Constraints

Create a trigger to enforce the
constraint that the size of a Database
class cannot exceed 30

� RAISE EXCEPTION would abort the

statement

