

Questions To Be Answered

- How do we decide whether a schema is bad?
- How do we decompose a table to turn a bad schema into a good one?

Functional Dependency (FD)

- A functional dependency on table R is the assertion that two records having the same values for attributes {A₁,...,A_n} must also have the same value for attribute B
- $\{A_1,...,A_n\}$ →B, or $\{A_1,...,A_n\}$ functionally determine B

About FD

A FD is an assertion based on assumptions about all possible data, not just the existing data

П	id	name
1		John
2		lane

$$\{id\} \rightarrow \{name\}$$

$$\{name\} \rightarrow \{id\} \times$$

FD with Multiple Attributes

$A \rightarrow B$

Trivial Functional Dependency

FD: $\{A_1, A_2, A_3, ..., A_n\} \rightarrow \{B_1, B_2, B_3, ..., B_m\}$

- FD is trivial if all B's are in A
- FD is nontrivial if at least one B is not in A
- FD is completely nontrivial if no B is in A

From now on, when we talk about FD, we mean completely nontrivial FD unless otherwise noted.

FD Example 1

- Musicians (id, name, address)
- Bands (id, name)
- Band_Members (band_id, musician_id)

FD Example 2

- ◆Books (id, title)
- Authors (id, name)
- Book_Authors (book_id, author_id, author_order)

FD Example 3

id	name	address	assignment	due	grade
1	John	123 Main St.	HW1	2009-06-22	A-
1	John	123 Main St.	HW2	2009-07-10	В
2	Jane	456 State St.	HW1	2009-06-22	Α

class_records

Functional dependencies??

Key

- ♠A is a key of table R if
 - A functionally determines all attributes of R
 - No proper subset of A functionally determines all attributes of R

A Few Things about Keys

- A table may have multiple keys
- A key may consist of multiple attributes
- Superset of a key is called a super key
- The definition doesn't say anything about uniqueness
- A key has to be *minimal*, but not necessarily *minimum*

Key Examples

- Musicians and bands
- Books and authors
- Class_records

Boyce-Codd Normal Form (BCNF)

♠A table R is in BCNF if for every nontrivial FD A → B in R, A is a super key of R.

Or

The key, the whole key, and nothing but the key, so help me Codd.

BCNF or Not?

- Musicians and bands
- Books and authors
- Class records

Determine If a Table is BCNF

- Step 1: identify all FDs
- Step 2: find all keys
- Step 3: check LHS of all non-trivial FDs and see if they are a superset of a key (i.e. a super key)

Decompose into BCNF

- Given table R with FD's F
- lacktriangle Look among F for a BCNF violation $A \rightarrow B$
- Compute A⁺
- Decompose R into:
 - $R_1 = A^+$
 - $\blacksquare R_2 = (R A^+) \cup A$
- Continue decomposition with R₁ and R₂ until all resulting tables are BCNF

Closure of Attributes A+

- Given
 - a set of attributes A
 - a set of functional dependencies S
- Closure of A under S, A+, is the set of all possible attributes that are functionally determined by A based on the functional dependencies inferable from S

Simple Closure Example

- **●**R: {A,B,C}
 - S: {A→B, B→C}
- **♦**{A}+??
- **♦**{B}+??
- **♦**{C}+ ??

Armstrong's Axioms

Reflexivity

If $\mathbf{B} \subseteq \mathbf{A}$, then $\mathbf{A} \rightarrow \mathbf{B}$

Transitivity

If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$

Augmentation

If $A \rightarrow B$, then $AC \rightarrow BC$ for any C

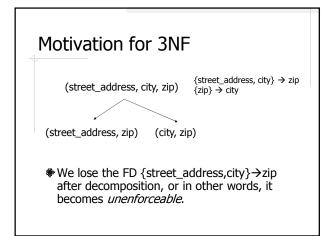
Two More FD Rules

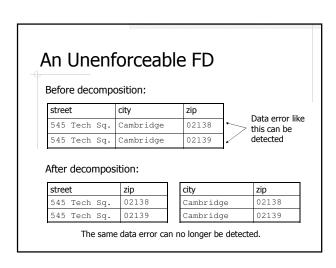
Union

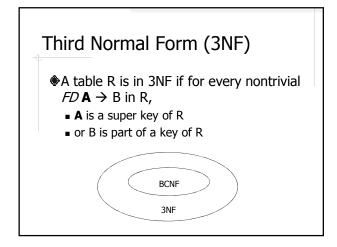
If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow BC$

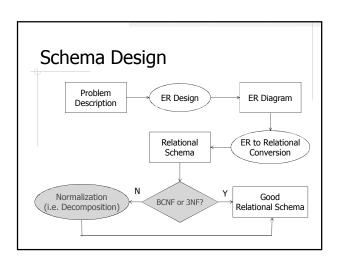
Decomposition

If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$


Computing A+


- ♦ Initialize A+ = A
- \diamond Search in **S** for **B** \rightarrow C where
 - **■** B ⊆ A+
 - C ∉ **A**+
- ◆Add C to A+
- ◆Repeat until nothing can be added to A+


Computing A+ Example


- ♠R(A, B, C, D, E, F)
- $\$S: AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B$
- **♦**{A,B}+??
- ♦ Is {A,B} a key ??
- ♦How do we find out the key(s) from R??

id	name	address	assignment	due	grade
1	John	123 Main St.	HW1	2009-06-22	A-
1	John	123 Main St.	HW2	2009-07-10	В
2	Jane	456 State St.	HW1	2009-06-22	Α
		cla	ss_records		

