CS422 Principles of Database Systems

Indexes

Chengyu Sun
California State University, Los Angeles

Indexes

% Auxiliary structures that speed up
operations that are not supported
efficiently by the basic file organization

A Simple Index Example

10 10
20 20
30 T 30

0l 44— %

50 50

60 60

0
70

80 [F—]
80

Index blocks Data blocks

About Indexes

#Index entry
= <key, rid>
= <key, list of rid>
= Data record
#The majority of database indexes are
designed to reduce disk access

Organization of Index Entries

#Tree-structured

= B-tree, R-tree, Quad-tree, kd-tree, ...
#Hash-based

= Static, dynamic
#Other

= Bitmap, VA-file, ...

From BST to BBST to B

#Binary Search Tree
= Worst case??
#Balance Binary Search Tree
= E.g. AVL, Red-Black
#B-tree
= Why not use BBST in databases??

B-tree (B*-tree) Example

100] |

root]
T

internal 30 | ‘ 120‘ 150|

nodes | ‘ ‘ |

.)

3|5 1] [30]35] 100]101]110] [120]130]

150156179

1
NN

INRESNANE N RRES AT
ce ot

L1

B-tree Properties

Each node occupies one block

Order n
= n keys, n+1 pointers

% Nodes (except root) must be at least half full
= Internal node: [(n+1) /21 pointers
= Leaf node: | (n+1) /2] pointers

All leaf nodes are on the same level

B-tree Operations

B-tree Insert

Find the appropriate leaf
Insert into the leaf
= there’s room > we're done
= NO room
« split leaf node into two
+ insert a new <key,pointer> pair into leaf’s parent node
#® Recursively apply previous step if necessary
» A split of current ROOT leads to a new ROOT

B-tree Insert Examples

#(a) simple case

= Space available in leaf
#(b) leaf overflow
#(c) non-leaf overflow
@(d) new root

HGM Notes

(a) Insert key = 32 n=3

100

HGM Notes

(b) Insert key = 7 n=3

100

Ny
T I

31

HGM Notes

(c) Insert key = 160 n=3

\
//160

| 120
150
| ¥8Q
T
180

160
179
180
<200

HGM Notes

(d) New root, insert 45 n=3

new root

/

0
20

\
&
/

el 29) | QY| RAF | 29
1] || || |
H 1 2 —

HGM Notes

B-tree Delete

Find the appropriate leaf

Delete from the leaf
w still at least half full > were done
= below half full — coalescing

+ borrow a <key,pointer> from one sibling node, or

+ merge with a sibling node, and delete from a parent
node

Recursively apply previous step if necessary

B-tree Delete in Practice

#Coalescing is usually not implemented
because it's too hard and not worth it

Static Hash Index

/

—

record

hash bucket ~—

function blocks overflow blocks
bucket

directory

Hash Index

Hash Function

A commonly used hash function: K%B
= K is the key value
= B is the number of buckets

Static Hash Index Example ...

4 buckets
#Hash function: key%4
#2 index entries per bucket block

... Static Hash Index Example

bucket bucket blocks

directory
key%4 E/ L0
oo
record \ \:I D
BN -

Insert the records with the following keys: 4,
3, 7, 17, 22, 10, 25, 33

Dynamic Hashing

#Problem of static hashing??
#Dynamic hashing
= Extendable Hash Index

Extendable Hash Index ...

Maximum 2" buckets
= M is maximum depth of index

Multiple buckets can share the same
block

#Inserting a new entry to a block that is

already full would cause the block to
split

... Extendable Hash Index

#Each block has a local depth 1., which
means that the hash values of the
records in the block has the same
rightmost L bit

#The bucket directory keeps a global
depth 4, which is the highest local
depth

Extendable Hash Index
Example

#M=4 (i.e. could have at most 16
buckets)

#Hash function: xey%2*

#2 index entries per block

#lnsertg, 11, 4, 14

Extendable Hashing (I)

Bucket directory Bucket blocks

d=0 L=0

insert 8 (i.e. 1000)
Insert 11 (i.e. 1011)

o] [A 1000 | =0

1011

ﬂ insert 4 (i.e. 0100)

Extendable Hashing (II)

Bucket directory Bucket blocks
=T o T 1000 [t=t]
1
1] 0100
1011 [=L

ﬂ insert 14 (i.e. 1110)

Extendable Hashing (III)

Bucket directory Bucket blocks
=T 00 T 1(1)00 =2]
0 | = 0100
01 1110 | t=2

11

\ o T

Readings

#Textbook Chapter 21.1 - 21.4

