

Entity-Relationship (ER) Model

Problem → ER Model → Tables

- ♠An object-oriented approach
- A visual representation of the design ER Diagram
- Easily converted to relational model

Example: Problem Description

- Student
 - id, name, address
- Department
 - name
- Classes
 - code, name, quarter, section number
- Class offerings and enrollment

Entity Set and Attributes

- Entity Set is similar to class in an OO language
- Attributes are the properties of an entity set
 - Similar to the *class fields* in an OO language
 - Must have simple values like numbers or strings, i.e. cannot be collection or composite type

Keys

- A key is an attribute or a set of attributes that *uniquely* identify an entity in an entity set.
- Each entity set must have a key
- ◆If there are multiple keys, choose one of them as the *primary key*

Types of Relationships

- Many-to-Many
- Many-to-One / One-to-Many
- One-to-One

Many-to-Many Relationship

- Each entity in E₁ can be related to many entities in E₂
- Each entity in E₂ can be related to many entities in E₁

Many-to-One Relationship

- Each entity in E₁ can be related to one entities in E₂
- Each entity in E₂ can be related to many entities in E₁

One-to-One Relationship

- Each entity in E₁ can be related to one entities in E₂
- Each entity in E₂ can be related to one entities in E₁

Relationship Type Examples

- Students and classes??
- Departments and classes??
- Person and Favorite movie??

- ♦One
 - 0 or 1
 - Exactly 1 → Referential Integrity
- Many
 - 0..N
 - 1..N
 - N..M (Example??)

One vs. Exactly One

- Both lead to foreign key constraint in SQL
 - One: foreign key + NULL
 - Exactly one: foreign key + NOT NULL
- It's usually not too important to distinguish the two in ER design

Design Example: Bank Database

Design a database for a bank to keep track of customers and accounts. Each account has id, and a balance; each customer has a name and address. A customer can own multiple accounts, and an account can be jointly owned by multiple customers.

ER Design (I)

- Step 1: identify entity sets, attributes, and relationships.
- ◆Tips:
 - Nouns tend to be entity sets or attributes
 - Attribute: simple data that can be represented by a single value
 - Entity Set: composite data
 - <u>Verbs</u> tend to be relationships

ER Design (II) Step 2: determine relationship types Step 3: complete entity sets Identify/create keys Add additional attributes if necessary Some common problems: No keys Wrong relationship types Collection/composite attributes

"Arrows" in Multiway Relationships In multiway relationships, an arrow points to an entity set **E** means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in **E**.

Compare the Ways to Model Grades A. Relationship attribute B. Entity set attribute C. Entity set in a multiway relationship D. Entity set in a binary relationship

From Weak to Strong *We can usually create unique IDs for entity sets

- A: salaried employees and hourly employees
- B: administrator users and regular users
- ◆C: pop songs and country songs
- D: beer and wine

