CS422 Principles of Database Systems

Disk Access

Chengyu Sun
California State University, Los Angeles

Disk Drive ...

Track Sector
— Platter
>
Actuator | & H
0 .
=>
I

Arm with R/W head

http://www.youtube.com/watch?v=PCipea9xEXE

... Disk Drive ...

#Each disk drive contains a number of
rotating platters

#Each platter has a number of tracks on
which data is recorded

#Each track is divided into equal-sized (in
bytes) sectors

... Disk Drive

#The tracks with the same track number
on different platters form a cylinder

#Data can be accessed through
read/write heads

#Read/write heads can move from one
track to another controlled by an
actuator

Access Data on Disk

1. Move the read/write head to the
requested track

2. Rotate the platter so the first
requested byte is beneath the r/w
head

3. Continue to rotate the platter until all
the requested data is transferred

Disk Access Time

#Seek time
#Rotational delay
#Transfer time

Number of Bytes per Track

Transfer Rate =
Time for One Revolution of Platter

Measures of Disk Drive
Performance

% Capacity

Average seek time
#Rotation speed
#Transfer rate

Seagate ST3500410AS

#Capacity: 500G

Bytes per sector: 512

Default sectors per track: 63

Average seek time (read): <8.5ms
Average seek time (write): <9.5ms
#RPM: 7200rpm

Examples: Disk Access Time

#Use the specs of ST3500410AS to
calculate the time for the following disk
accesses
= Read 1KB on one track
= Read 4KB on one track
= Read 4KB on four tracks

What We Learned from the
Examples

Reading more only costs little

&
Sequential access is much more
efficient than random access

Improve Disk Performance

Caching
#Striping
#Mirroring

Storing parity

Caching

#Read more data than requested
= Read one sector vs. read one track
#Transfer data from cache
= No seek time
= No rotational delay
= Transfer rate 3Gb/s (SATA)

Striping

% Multiple small disks are faster than one large
disk ...

% ... but only when the I/O requests are evenly
distributed among the disks

Sector 0 Sector 0

Sector 1 Sector 1
Sector 2
Sector 3

\ Sector 0

Sector 1 Physical Disk 1

Physical Disk 0

Virtual Disk

Example: Striping

#Suppose we using N disks for striping,
and each disk has k sectors. An access
to virtual sector x is mapped to an
access to which sector on which disk??

Mirroring

Store the same data on two or more
disks

#Improve reliability
2Do notimprove speed
= Same read speed
= Slower write (why??)

Storing Parity ...

#|et S be a set of bits. The parity of S is
= 1 if S contains odd number of 1's
= 0 if S contains even number of 1's

Disk 1 l1]ofof1]1]0]
Disk 2 (1]1]JoJo[1]o0]
Disk 3 (1]ofof1]o]1]
ParityDisk | 1[1]0]o0[?2]??]

... Storing Parity

#Backup any number of disks with one
disk

#Can only recovery from single disk
failure

Storing Parity without a Parity
Disk

Disk 1 Disk 2 Disk 3

9
N

What’s the benefit of distributing parity to all disks??

RAID ...

#Redundant Array of Inexpensive Drives
#RAID 0 - striping

#RAID 1 — mirroring

#RAID 1+0 — mirroring + striping
#RAID 2 — striping (bit)

#RAID 3 - striping (byte) + parity
#RAID 4 - striping + parity

. RAID

#RAID 5 - striping + parity (no separate
parity disk)

#RAID 6 — striping + 2*parity (no
separate parity disk)

OS Disk Access API

Block-level API
#File-level API

Block and Page ...

A block is similar to a sector except that
the size is determined by the OS
= E.g. NTFS default block size on Vista is 4KB
A file always starts at the beginning of a
block

» Tradeoff between large and small block
sizes??

... Block and Page

A page is a block-sized area of main
memory

#Each block/page is uniquely numbered
by the OS

OS Block-Level API

read_block (n, p) — read block n into page p

write_block (n,p) — write page p to block n

& allocate (n, k) — allocate k continuous blocks; the
new blocks should be as close to block n as possible

#® deallocate (n, k) — mark k continuous blocks
starting at block n as unused

OS File-Level API

% Similar to the API of
RandomAccessFile in Java

= http://java.sun.com/javase/6/docs/api/java

/io/RandomAccessFile.html

= Treat a file as a continuous sequence of
bytes

m seek (long position)

= Read and write various data types

DBMS Disk Access API ...

% Approach 1: use OS block-level API
= Full control of disk access
+ Most efficient
+ Not constrained by OS limitations (e.g. file size)
= Complex to implement
= Disks must be mounted as raw disk
= Difficult to administrate

. DBMS Disk Access API ...

E

Approach 2: use OS file-level API
= Easy to implement

= Easy to administrate

= No block I/O

+ Much less efficient

+ No paging, which is required by DBMS buffer
management

... DBMS Disk Access API

Approach 3: build a block I/O API on
top of OS's file I/O API
= The approach taken by most DBMS

Readings

Chapter 12 of the textbook

*
SimpleDB disk access code in the
package simpledb.file

#The SSD Anthology -
http://www.anandtech.com/show/2738

