
1

CS520 Web Programming
Declarative Security

Chengyu Sun

California State University, Los Angeles

Need for Security in Web
Applications

Potentially large number of users

Multiple user types

No operating system to rely on

Web Application Security

request

who are you?

username/password

you’re not authorized to access

A
u
th
e
n
ti
ca
ti
o
n

Connection Security

A
u
th
o
ri
za
ti
o
n

(A
cc
e
ss
 C
o
n
tr
o
l)

Client Server

Connection Security

Secure Socket Layer (SSL)

� Server authentication

� Client authentication

� Connection encryption

Transport Layer Security (TLS)

� TLS 1.0 is based on SSL 3.0

� IETF standard (RFC 2246)

HTTPS

HTTP over SSL

Configure SSL in Tomcat -
http://tomcat.apache.org/tomcat-7.0-
doc/ssl-howto.html

Programmatic Security

Security is implemented in the
application code

Example:
� Login.jsp

� Members.jsp

Pros?? Cons??

2

Security by Java EE
Application Server

HTTP Basic

HTTP Digest

HTTPS Client

Form-based

HTTP Basic

HTTP 1.0, Section 11.1-
http://www.w3.org/Protocols/HTTP/1.0/draft-
ietf-http-spec.html

request for a restricted page

prompt for username/password

resend request + username & password

Client Server

HTTP Basic – Configuration

AuthType Basic
AuthName "Basic Authentication Example"
AuthUserFile /home/cysun/etc/htpasswords
Require user cs520

HTTP Basic – Request

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*

HTTP Basic – Server Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT
Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Basic realm="Restricted Access Area"

Content-Length: 484
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>

<head><title>401 Authorization Required</title></head>

… …
</html>

HTTP Basic – Request Again

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*
Authorization: Basic Y3lzdW46YWJjZAo=

Base64 Encoding of “cysun:abcd”

An online Base64 decoder is at
http://www.opinionatedgeek.com/dotnet/tools/Base64Decode/

3

Improve HTTP Basic (I)

HTTP Basic
Username and password are

sent in plain text.

Encrypt username and

password.

Cryptographic Hash Function…

String of arbitrary length � n bits digest

Properties

1. Given a hash value, it’s virtually impossible to find a

message that hashes to this value

2. Given a message, it’s virtually impossible to find another

message that hashes to the same value

3. It’s virtually impossible to find two messages that hash to
the same value

A.K.A.

� One-way hashing, message digest, digital fingerprint

…Cryptographic Hash Function

Common usage

� Store passwords, software checksum …

Popular algorithms

� MD5 (broken, partially)

� SHA-1 (broken, sort of)

� SHA-256 and SHA-512 (recommended)

Encrypting Password is Not
Enough

Why??

Improve HTTP Basic (II)

HTTP Basic
Username and password are

sent in plain text.

Encrypt username and

password.

HTTP Digest
Additional measures to prevent

common attacks.

HTTP Digest

RFC 2617 (Part of HTTP 1.1) -
http://www.ietf.org/rfc/rfc2617.txt

request for a restricted page

prompt for username/password + nonce

resend request + message digest

4

HTTP Digest – Server
Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT
Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Digest realm="Restricted Access Area“,

qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

algorithm=“MD5”,

opaque="5ccc069c403ebaf9f0171e9517f40e41"
Content-Length: 484

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html>

<head><title>401 Authorization Required</title></head>
… …

</html>

HTTP Digest – Request Again

GET /restricted/index.html HTTP/1.0

Host: sun.calstatela.edu
Accept: */*

Authorization: Digest username=“cysun”,

realm=“Restricted Access Area",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",

uri="/restricted/index.html", qop=auth,

nc=00000001, cnonce="0a4f113b",
opaque="5ccc069c403ebaf9f0171e9517f40e41”,

algorithm=“MD5”

response="6629fae49393a05397450978507c4ef1"

Hash value of the combination of of username, password,
realm, uri, nonce, cnonce, nc, qop

Form-based Security

Unique to J2EE application servers

Include authentication and
authorization, but not connection
security

Form-base Security using
Tomcat

$TOMCAT/conf/tomcat-users.xml

� Users and roles

$APPLICATION/WEB-INF/web.xml

� Authentication type (FORM)

� Login and login failure page

� URLs to be protected

Example – Users and Roles

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>
<role rolename=“admin"/>

<role rolename=“member"/>

<user username=“admin" password=“1234“
roles=“admin,member"/>

<user username=“cysun" password=“abcd“

roles=“member"/>
</tomcat-users>

Example – Directory Layout

index.html

login.html

logout.jsp

/admin

/member

index.html

index.html

/WEB-INF web.xml

error.html

5

Example – Login Page

<form action="j_security_check" method="post">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="login" value="Login">

</form>

Example – web.xml …

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>

</form-login-config>
</login-config>

… Example – web.xml

<security-constraint>
<web-resource-collection>
<web-resource-name>AdminArea</web-resource-name>
<url-pattern>/admin/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>

</auth-constraint>
</security-constraint>

Declarative Security

Security constraints are defined outside
application code in some metadata
file(s)

Advantages

� Application server provides the security
implementation

� Separate security code from normal code

� Easy to use and maintain

Limitations of Declarative
Security by App Servers

Application server dependent

Not flexible enough

Servlet Specification only requires URL
access control

Security Requirements of Web
Applications

Authentication

Authorization (Access Control)

� URL

� Domain object

� Method invocation

� Access to service layer, e.g. DAO

� Access to web services

6

Spring Security (SS)

A security framework for Spring-based
applications

Addresses all the security requirements
of web applications

Formerly known as Acegi Security

� ABCDEFGHI

How Does Spring Security
Work

Intercept request and/or response

� Servlet filters

� Spring handler interceptors

Intercept method calls

� Spring method interceptors

Servlet Filter

Intercept, examine, and/or modify
request and response

Servlet/JSP

Filter

request response

Servlet Filter Example

web.xml

� <filter> and <filter-mapping>

Modify request

Modify response

Spring Handler Interceptor

Serve the same purpose as servlet filter

Configured as Spring beans, i.e. support dependency
injection

Controller

Handler Interceptor

request response

Intercept Request/Response

Controller
/member/index.html

Request

Response

What can we do by
intercepting the

request??

What can we do by
intercepting the

response??

7

Intercept Method Call

Method Invocation
User getUserById(1)

BeforeAdvice

AfterAdvice

What can we do
in BeforeAdvice??

What can we do
in AfterAdvice??

Add Spring Security to a Web
Application

<filter>

<filter-name>springSecurityFilterChain</filter-name>
<filter-class>

org.springframework.web.filter.DelegatingFilterProxy

</filter-class>
</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

web.xml

Main Components of Spring
Security

Authentication

URL Security

Method invocation security

Object access security

Security tag libarary

Authentication Manager

Authentication Manager

Authentication

Provider

Authentication

Provider

Authentication

Provider

Authentication

Sources

database LDAP Servlet

Container

Authentication Sources
Supported

Database

LDAP

JAAS

CAS

OpenID

SiteMinder

X.509

Windows NTLM

Container-based

� JBoss

� Jetty

� Resin

� Tomcat

Authenticate Against a
Database – Configuration

<authentication-manager>
<authentication-provider>

<jdbc-user-service
data-source-ref="dataSource" />

<authentication-provider>
</authentication-manager>

In the security namespace:

8

Authenticate Against a
Database – Default Schema

create table users (
username string primary key,
password string,
enabled boolean

);

create table authorities (
username string references users(username),
authority string -- role name

);

Authenticate Against a
Database – Customization

<jdbc-user-service>

� users-by-username-query

� authorities-by-username-query

<authentication-provider>

� <password-encoder>

� user-service-ref

URL Security – Configuration

<http auto-config="true" use-expressions="true">
<intercept-url pattern="/admin/**"

access="hasRole('ROLE_ADMIN')" />
<intercept-url pattern="/member/**"

access="hasRole('ROLE_MEMBER')" />
</http>

In the security namespace:

<http>

Create and control a chain of security
filters, e.g.

� FilterSecurityInterceptor

� ExceptionTranslationFilter

� SecurityContextPersistenceFilter

� UsernamePasswordAuthenticationFilter

Pattern for <intercept-url>

Default to Ant path pattern, e.g.
� /admin/*

� /admin/**

� /*.html

� /**/*.html

Security-Related SpEL
Methods and Properties

hasIpAddress()

hasRole()

hasAnyRole()

permitAll

denyAll

anonymous

authenticated

rememberMe

fullyAuthenticated

9

Some <http> Customizations

<form-login>

� login-page

� authentication-failure-url

� default-target-url

<remember-me>

Enable Method and Object
Security

Use an Access Decision Manager for
method security

Use one or more After Invocation
Providers for object security

<global-method-security secured-annotations=“enabled”>

In the security namespace:

Access Decision Manager

Access Decision Manager

Access Decision

Voter

Access Decision

Voter

Access Decision

Voter

Role Voter User-defined Voter

Each voter returns ACCESS_GRANTED, or ACCESS_DENIED,
or ACCESS_ABSTAIN

Types of Decision Managers

Affirmative based

Consensus based

Unanimous based

How Access Decision Voter
Work

supports() – determines whether the

voter should participate a vote based on

� The class type of the object to be authorized

� Some configuration attributes, e.g. ROLE_ADMIN,
PERM_COURSE_WRITE

vote() – casts a vote based on

� Authentication information of the current user

� The object to be authorized

� Configuration attributes

Method Security Example in
CSNS2

Secure CourseDao.saveCourse()

so that administrators can create and
edit courses, while course coordinators
can edit their own courses
� MethodAccessVoter.java

� CourseWriteVoter.java

� CourseDao.java

� security.xml

10

Object Security Using After
Invocation Provider

Very similar to Access Decision Voter
� supports()

� decide()

Object Security Example in
CSNS2

Secure
AssignmentDao.getAssignmentById()

to allow only the instructors and the students
in a section to access an assignment
� ObjectAccessVoter.java

� AssignmentReadVoter.java

� AssignmentDao.java

� security.xml

Security Tag Library

http://static.springsource.org/spring-
security/site/docs/3.1.x/reference/taglib
s.html

<authorize>

� access

<authentication>

� property

Security Taglib Examples in
CSNS2

Hide menus from the users who are not
authorized to access them
� menu.jsp

Conclusion

Declarative security vs. Programmatic
security

Spring Security provides the best of
both worlds

� Declarative security framework

� Portability and flexibility

� Separate security code from regular code

