CS520 Web Programming

Declarative Security

Chengyu Sun
California State University, Los Angeles

Need for Security in Web
Applications

Potentially large number of users
Multiple user types
#No operating system to rely on

Web Application Security

Client Server

request

j’ who are you?
L

username/password

Authentication

you're not authorized to access }

Authorization
(Access Control)

Connection Security

Connection Security

Secure Socket Layer (SSL)
= Server authentication
= Client authentication
= Connection encryption
#Transport Layer Security (TLS)
= TLS 1.0 is based on SSL 3.0
= IETF standard (RFC 2246)

HTTPS

#HTTP over SSL

Configure SSL in Tomcat -
http://tomcat.apache.org/tomcat-7.0-
doc/ssl-howto.html

Programmatic Security

Security is implemented in the
application code
#Example:
m Login. jsp
m Members. jsp

#Pros?? Cons??

Security by Java EE
Application Server

#HTTP Basic
#HTTP Digest
#HTTPS Client
#Form-based

HTTP Basic

HTTP 1.0, Section 11.1-
http://www.w3.0org/Protocols/HTTP/1.0/draft-
ietf-http-spec.html

request for a restricted page

Client prompt for username/password Server

resend request + username & password

HTTP Basic — Configuration

AuthType Basic

AuthName "Basic Authentication Example"
AuthUserFile /home/cysun/etc/htpasswords
Require user cs520

HTTP Basic — Request

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*

HTTP Basic — Server Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT

Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Basic realm="Restricted Access Area"
Content-Length: 484

Content-Type: text/html; charset=iso-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head> <title>401 Authorization Required</title></head>

</html>

HTTP Basic — Request Again

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu

Accept: */*

Authorization: Basic Y3lzdW46YWJjZAo=

I

Base64 Encoding of “cysun:abcd”

An online Base64 decoder is at
http.//www.opinionatedgeek.comy/dotnet/tools/Base64Decode/

Improve HTTP Basic (I)

Username and password are
sent in plain text.

HTTP Basic

|
—

Encrypt username and
password.

Cryptographic Hash Function...

String of arbitrary length = n bits digest
&

Properties
1. Given a hash value, it's virtually impossible to find a
message that hashes to this value

2. Given a message, it's virtually impossible to find another
message that hashes to the same value

3. It's virtually impossible to find two messages that hash to
the same value
4 AKA.
= One-way hashing, message digest, digital fingerprint

...Cryptographic Hash Function

#Common usage

= Store passwords, software checksum ...
Popular algorithms

= MD5 (broken, partially)

= SHA-1 (broken, sort of)

= SHA-256 and SHA-512 (recommended)

Encrypting Password is Not
Enough

® Why??

Improve HTTP Basic (II)

Username and password are

HTTP Basic sent in plain text.

Encrypt username and
password.

. Additional measures to prevent
HTTP Digest common attacks.

I

HTTP Digest

RFC 2617 (Part of HTTP 1.1) -
http://www.ietf.org/rfc/rfc2617.txt

request for a restricted page

prompt for username/password + nonce

resend request + message digest

HTTP Digest — Server
Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT

Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Digest realm="Restricted Access Area",
qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
algorithm="MD5",
opaque="5ccc069c403ebafof0171e9517f40e41"

Content-Length: 484

Content-Type: text/html; charset=iso-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head><title>401 Authorization Required</title></head>

</html>

HTTP Digest — Request Again

GET /restricted/index.html HTTP/1.0

Host: sun.calstatela.edu

Accept: */*

Authorization: Digest username="cysun”,
realm="Restricted Access Area",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/restricted/index.html", qop=auth,
nc=00000001, cnonce="0a4f113b",
opaque="5ccc069c403ebafof0171e9517f40e41",
algorithm="MD5"
response="6629fae49393a05397450978507c4ef1"

I

Hash value of the combination of of usermame, password,
realm, uri, nonce, cnonce, nc, gop

Form-based Security

#Unique to J2EE application servers

#Include authentication and
authorization, but not connection
security

Form-base Security using
Tomcat

STOMCAT/conf/tomcat-users.xml
= Users and roles

SAPPLICATION/WEB-INF/web.xml
= Authentication type (FORM)
= Login and login failure page
= URLs to be protected

Example — Users and Roles

<?xml version="'1.0" encoding="utf-8'?>
<tomcat-users>
<role rolename="admin"/>
<role rolename="member"/>
<user username="admin" password="1234"
roles="admin,member"/>
<user username="cysun" password="abcd"
roles="member"/>
</tomcat-users>

Example — Directory Layout

4{ /admin H index.html ‘
—| /member H index.html ‘

logout.jsp

error.html

index.html

L wEBINF || webuml

Example — Login Page

<form action="j_security_check" method="post">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="login" value="Login">
</form>

Example — web.xml ...

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

... Example — web.xml

<security-constraint>
<web-resource-collection>
<web-resource-name>AdminArea</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

Declarative Security

Security constraints are defined outside
application code in some metadata
file(s)

Advantages

= Application server provides the security
implementation

= Separate security code from normal code
= Easy to use and maintain

Limitations of Declarative
Security by App Servers

Application server dependent
#Not flexible enough

Servlet Specification only requires URL
access contro/

Security Requirements of Web
Applications

Authentication

Authorization (Access Control)
= URL
= Domain object
= Method invocation

+ Access to service layer, e.g. DAO
+ Access to web services

Spring Security (SS)

A security framework for Spring-based
applications

Addresses all the security requirements
of web applications

#Formerly known as Acegi Security
= ABCDEFGHI

How Does Spring Security
Work

Intercept request and/or response
= Servlet filters
= Spring handler interceptors
#Intercept method calls
= Spring method interceptors

Servlet Filter

#Intercept, examine, and/or modify
request and response

__ Filter
// \
request response
Servlet/JSP

Servlet Filter Example

#web.xml

= <filter> and <filter-mapping>
Modify request
#Modify response

Spring Handler Interceptor

Serve the same purpose as servlet filter
4 Configured as Spring beans, i.e. support dependency

injection
Handler Interceptor
/ \
request response
Controller

Intercept Request/Response

What can we do by
intercepting the
request??

Request

Controller
/member/index.html

What can we do by
intercepting the
response??

P

Response

Intercept Method Call

What can we do

BeforeAdvice in BeforeAdvice??

Method Invocation
User getUserById(1l)

. What can we do
AfterAdvice in AfterAdvice??

Add Spring Security to a Web
Application

web.xml

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Main Components of Spring
Security

Authentication

#URL Security

Method invocation security
#Object access security

Security tag libarary

Authentication Manager

‘ Authentication Manager ‘

Authentication | | Authentication | ,,, | Authentication
Provider Provider Provider
Authentication — —
Sources
database LDAP Servlet
Container

Authentication Sources
Supported

4 Database # Container-based
% LDAP = JBoss
JAAS = Jetty
#CAS = Resin
= Tomcat
4 OpenID
4 SiteMinder
% X.509

Windows NTLM

Authenticate Against a
Database — Configuration

In the security namespace:

<authentication-manager>
<authentication-provider>
<jdbc-user-service
data-source-ref="dataSource" />
<authentication-provider>
</authentication-manager>

Authenticate Against a
Database — Default Schema

create table users (
username string primary key,
password string,
enabled boolean

)

create table authorities (
username string references users(username),
authority string -- role name

)

Authenticate Against a
Database — Customization

<jdbc-user-service>

= users-by-username-query

= authorities-by-username-query
<authentication-provider>

= <password-encoder>

= user-service-ref

URL Security — Configuration

In the security namespace:

<http auto-config="true" use-expressions="true">
<intercept-url pattern="/admin/**"
access="hasRole('ROLE_ADMIN")" />
<intercept-url pattern="/member/**"
access="hasRole('ROLE_MEMBER')" />
</http>

<http>

#Create and control a chain of security
filters, e.g.
= FilterSecurityInterceptor
= ExceptionTranslationFilter
= SecurityContextPersistenceFilter
= UsernamePasswordAuthenticationFilter

Pattern for <intercept-url>

Default to Ant path pattern, e.g.
m /admin/*
m /admin/**
s /* . html
m/**/* html

Security-Related SpEL
Methods and Properties

4 hasIpAddress() # anonymous

4 hasRole() # authenticated

4 hasAnyRole() # rememberMe

@ permitAll % fullyAuthenticated

% denyAll

Some <http> Customizations

<form-login>
= login-page
= authentication-failure-url
= default-target-url

<remember-me>

Enable Method and Object
Security

In the security namespace:

<global-method-security secured-annotations="enabled”>

#Use an Access Decision Manager for
method security

#Use one or more After Invocation
Providers for object security

Access Decision Manager

‘ Access Decision Manager ‘

Access Decision| |Access Decision| ,,,, |Access Decision
Voter Voter Voter

Role Voter eoe o900 User-defined Voter

Each voter returns ACCESS_GRANTED, OF ACCESS_DENIED,
or ACCESS_ABSTAIN

Types of Decision Managers

Affirmative based
#Consensus based
#Unanimous based

How Access Decision Voter
Work

#® supports () — determines whether the
voter should participate a vote based on
= The class type of the object to be authorized

= Some configuration attributes, e.g. ROLE_ADMIN,
PERM_COURSE_WRITE

#® vote () — castsa vote based on
» Authentication information of the current user
= The object to be authorized
= Configuration attributes

Method Security Example in
CSNS2

#Secure CourseDao.saveCourse ()
so that administrators can create and
edit courses, while course coordinators
can edit their own courses

m MethodAccessVoter. java
m CourseWriteVoter. java
m CourseDao. java

m security.xml

Object Security Using After
Invocation Provider

#\/ery similar to Access Decision Voter
m supports ()
m decide ()

Object Security Example in
CSNS2

Secure
AssignmentDao.getAssignmentById ()
to allow only the instructors and the students
in a section to access an assignment

m ObjectAccessVoter. java
= AssignmentReadVoter. java
» AssignmentDao. java

= security.xml

Security Tag Library

http://static.springsource.org/spring-
security/site/docs/3.1.x/reference/taglib
s.html

<authorize>
m dCCess

<authentication>
= property

Security Taglib Examples in
CSNS2

#Hide menus from the users who are not
authorized to access them
= menu. jsp

Conclusion

Declarative security vs. Programmatic
security

#Spring Security provides the best of
both worlds
= Declarative security framework
= Portability and flexibility
= Separate security code from regular code

10

