CS122 Using Relational Databases and SQL
Subqueries and Set Operations

Chengyu Sun
California State University, Los Angeles

Query Results

Query results are either a table or a
value*
m E.g. select * from products Or
select count (*) from products
® Query results can be used in places
where a table/value can be used

* A value can also be considered as a table with only
one row and one column

Subquery Example 1

#Find the most expensive products

select * from products where price =
(select max(price) from products);

Subquery Example 2

List the ID’s of the products sold on
2011/9/1

select d.product_id from order_details d,
(select * from orders
where date_ordered = '2011-09-01") as o
where d.order_id = o.id;

Subquery Example 3

#|ist the ID's of the products sold on
2011/9/1

select product_id from order_details
where order_id in
(select id from orders
where date_ordered = '2011-09-01");

About IN

Checks whether a value is in a set of
values
#Only works on single column
#Returns NULL if
= The value is NULL, or

= No match found and there’s a NULL in the
set

More Subquery Examples

#Find the CPU products that are cheaper
than Intel Pentium D

#Find the products that have never been
ordered

= NOT IN

Correlated Subquery

#®The inner query uses column(s) from
the outer query

= E.g. find the products that are cheaper
than the average price of their category

select * from products p where p.price <
(select avg(price) from products
where category = p.category);

How Correlated Subqueries
Work

Outer query
Inner WHERE
(1, CPU, Intel Core 2 Duo, 200) —» Query ~— conditions
. Inner WHERE
(2, CPU, Intel Pentium D, 98.99) —» Query — conditions | result
XX} XX]
l Inner WHERE result
(6, HD, Maxtor 250G, 60.89) ~ — Query " conditions |

Correlated Subquery Using
EXISTS

Find the customers who have ordered
from our store before

select * from customers c where exists
(select * from orders
where customer_id = c.id);

About EXISTS

A unary operator
Returns true if the subquery returns at
least one row

#NOT EXISTS

ANY and ALL

#Find the CPU products that are more
expensive than all HD products

#Find the HD products that are more
expensive than at least one CPU
product

Can we write these gueries without using ANY or ALL??

Set Operations

Union

= {1,2,3} U {4,5,6} ={1,2,3,4,5,6}
Intersect

n {1,2,3} n {2,3,4} = {2,3}
Difference

n {1,2,3} -{2,3,4} = {1}

Set Operations in Database -
UNION

vendors customers
vendor zip customer zip
Intel 91111 John 91111
AMD 92222 Jane 91111
Seagate | 83333 Tom 92222
MAXTOR | 74444

#List all the zip codes from both
vendors and customers table

About UNION

Combine result tables of SELECT statements
The result tables must have the same number
of columns
The corresponding columns must have the
same (or at least “compatible”) type
Duplicates in union results
= UNION — automatically remove duplicates
= UNION ALL — keep duplicates

INTERSECT and DIFFERENCE

Same syntax as UNION

MySQL does not support INTERSECT
and DIFFERENCE

® So how we implement intersection and
difference without INTERSECT and
DIFFERENCE??

Summary

Syntax
= Subquery (regular and correlated)
= IN, EXISTS, ANY, ALL
A different way of thinking (vs. Joins)

