
1

CS122 Using Relational Databases and SQL
Views, Indexes, and Transactions

Chengyu Sun

California State University, Los Angeles

Views

A virtual table consists of the results of a
query

Example: create a view
members_salespeople_view

(member_name, salesperson_name)

create view view_name as query;

About Views

The data in a view is dynamically
computed

� Changes to base tables are automatically
reflected in the view

A view can be used as a table in SQL
queries

Views cannot be updated (except in
some very rare cases)

Why Views

Present the data in a different way

Simplify SQL queries

Security reasons

� E.g. expose only part of the data to certain
type of users

Indexes

Make query execution more efficient

Query Example

name salary

Joe 2000

Bob 5000

Lisa 4000

Amy 4500

John 4500

Sally 5000

Val 3000

Meg 6000

select salary from employees where name = ‘Sally’;

employees

2

Search with an Index

Amy Bob Joe John Lisa Meg Sally Val

John

Bob

Amy Joe

Meg

Lisa Sally

[J
o
e
,2
0
0
0
]

[B
o
b
,5
0
0
0
]

[L
is
a
,
4
0
0
0
]

[A
m
y,
 4
5
0
0
]

[J
o
h
n
,
4
5
0
0
]

[S
a
lly
,
5
0
0
0
]

[V
a
l,
 3
0
0
0
]

[M
e
g
,
6
0
0
0
]

Index

Table

Create Index

Example: create an index on the name
column of the employees table

create index index_name
on table_name (col_name,…);

create index emp_name_idx on employees (name);

The Need for Transaction

Example: transfer $100 from account A
to account B

account balance

A 134.60

B 122.21

C 3300.00

D 256.79

accounts

SQL Statements Involved in A
Transfer

-- Check whether account A has enough money

select balance from accounts where account = ‘A’;

-- Take $100 from account A

update account set balance = balance - 100
where account = ‘A’;

-- Add $100 to account B

update account set balance = balance + 100
where account = ‘B’;

Things Could Go Wrong

-- Check whether account A has enough money

select balance from accounts where account = ‘A’;

-- Take $100 from account A

update account set balance = balance - 100
where account = ‘A’;

System Crash!

Transaction

A group of statements that are treated
as a whole, i.e. either all operations in
the group are performed or none of
them are – the Atomicity property.

3

Transaction Syntax in MySQL

begin; -- start of a transaction

select balance from accounts where account = ‘A’;

update account set balance = balance - 100
where account = ‘A’;

update account set balance = balance + 100
where account = ‘B’;

commit; -- end of a transaction

(or rollback;)

ACID Properties of Database
Transactions

Atomic

Consistent

Isolated

Durable

