CS520 Web Programming

Declarative Security

Chengyu Sun
California State University, Los Angeles

Need for Security in Web
Applications

4 Potentially large number of users
#Multiple user types
4No operating system to rely on

Web Application Security

Client Server
request

{ who are you?
username/password

you're not authorized to access }

Authentication

Authorization
(Access Control)

Connection Security

Connection Security

#Secure Socket Layer (SSL)
= Server authentication
= Client authentication
= Connection encryption
#Transport Layer Security (TLS)
= TLS 1.0 is based on SSL 3.0
= [ETF standard (RFC 2246)

HTTPS

#HTTP over SSL

#Configure SSL in Tomcat -
http://tomcat.apache.org/tomcat-6.0-
doc/ssl-howto.html

Programmatic Security

#Security is implemented in the
application code

#Example:
m Login. jsp

m Members. jsp

#Pros?? Cons??

Security by J2EE Application
Server

#HTTP Basic
#HTTP Digest
#HTTPS Client
%Form-based

HTTP Basic

HTTP 1.0, Section 11.1-
http://www.w3.0org/Protocols/HTTP/1.0/draft-
ietf-http-spec.html

request for a restricted page

Client prompt for username/password Server

resend request + username & password

HTTP Basic — Configuration

AuthType Basic

AuthName "Basic Authentication Example"
AuthUserFile /home/cysun/etc/htpasswords
Require user ¢s520

HTTP Basic — Request

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu
Accept: */*

HTTP Basic — Server Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT

Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Basic realm="Restricted Access Area"
Content-Length: 484

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head> <title>401 Authorization Required</title></head>

</html>

HTTP Basic — Request Again

GET /restricted/index.html HTTP/1.0
Host: sun.calstatela.edu

Accept: */*

Authorization: Basic Y3lzdW46YWJjZAo=

T

Base64 Encoding of “cysun:abcd”

An online Base64 decoder is at
http.//www.opinionatedgeek.com/dotnet/tools/Base64Decode/

Improve HTTP Basic (I)

. Username and password are
HTTP Basic sent in plain text.

Encrypt username and
password.

Cryptographic Hash Function...

i

String of arbitrary length - n bits digest

4 Properties

1. Given a hash value, it's virtually impossible to find a
message that hashes to this value

2. Given a message, it's virtually impossible to find another
message that hashes to the same value

3. It's virtually impossible to find two messages that hash to
the same value

A.K.A.

s One-way hashing, message digest, digital fingerprint

i

...Cryptographic Hash Function

«Common usage

= Store passwords, software checksum ...
#Popular algorithms

= MD5 (broken, partially)

= SHA-1 (broken, sort of)

= SHA-256 and SHA-512 (recommended)

Encrypting Password is Not
Enough

@ Why??

Improve HTTP Basic (II)

Username and password are
sent in plain text.

HTTP Basic

Encrypt username and
password.

Additional measures to prevent

HTTP Digest common attacks.

i

HTTP Digest

4 RFC 2617 (Part of HTTP 1.1) -
http://www.ietf.org/rfc/rfc2617.txt

request for a restricted page

prompt for username/password + nonce

resend request + message digest

HTTP Digest — Server
Response

HTTP/1.1 401 Authorization Required

Date: Tue, 24 Oct 2006 14:57:50 GMT

Server: Apache/2.2.2 (Fedora)

WWW-Authenticate: Digest realm="Restricted Access Area",
qop="auth,auth-int",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
algorithm="MD5",
opaque="5ccc069c403ebaf9f0171e9517f40e41"

Content-Length: 484

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head> <title>401 Authorization Required</title></head>

</html>

HTTP Digest — Request Again

GET /restricted/index.html HTTP/1.0

Host: sun.calstatela.edu

Accept: */*

Authorization: Digest username="cysun”,
realm="Restricted Access Area",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",
uri="/restricted/index.html", qop=auth,
nc=00000001, cnonce="0a4f113b",
opaque="5ccc069c403ebafof0171e9517f40e41”,
algorithm="MD5"
response="6629fae49393a05397450978507c4ef1"

f

Hash value of the combination of of username, password,
realm, urif, nonce, crnonce, nc, gop

Form-based Security

#Unique to J2EE application servers

#Include authentication and
authorization, but not connection
security

Form-base Security using
Tomcat

& STOMCAT/conf/tomcat-users.xml
= Users and roles

% SAPPLICATION/WEB-INF/web.xml
= Authentication type (FORM)
= Login and login failure page
= URLs to be protected

Example — Users and Roles

<?xml version="'1.0" encoding="utf-8'?>
<tomcat-users>
<role rolename="admin"/>
<role rolename="member"/>
<role rolename="guest"/>
<user username="cysun" password="abcd" roles="admin,member"/>
<user username="test" password="test" roles="member"/>
<user username="guest" password="guest" roles="guest"/>
</tomcat-users>

Example — Directory Layout

4{ Jadmin H index.html ‘
4{ /member H index.html ‘

login.html

logout.jsp
error.html

index.html

L wesINe | webxml

Example — Login Page

<form action="j_security_check" method="post">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="login" value="Login">
</form>

Example — web.xml ...

<login-config>
<auth-method>FORM </auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

... Example — web.xml|

<security-constraint>
<web-resource-collection>
<web-resource-name>AdminArea</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

Declarative Security

#Security constraints are defined outside
application code in some metadata
file(s)

#Advantages

= Application server provides the security
implementation

= Separate security code from normal code
= Easy to use and maintain

Limitations of Declarative
Security by App Servers

#Application server dependent
#Not flexible enough

#Servlet Specification only requires URL
access control

Security Requirements of Web
Applications

#Authentication

#Authorization (Access Control)
= URL
= Domain object
= Method invocation

* Access to service layer, e.g. DAO
* Access to web services

Spring Security (SS)

@A security framework for Spring-based
applications

#Addresses all the security requirements
of web applications

#Formerly known as Acegi Security
= ABCDEFGHI

How Does Spring Security
Work

#Intercept request and/or response
= Servlet filters
= Spring handler interceptors
#Intercept method calls
= Spring method interceptors

Servlet Filter

#Intercept, examine, and/or modify
request and response

Filter

/ \

request response
Servlet/JSP

—_— | —

Servlet Filter Example

®web.xml

= <filter> and <filter-mapping>
#Modify request
#Modify response

Spring Handler Interceptor

Serve the same purpose as servlet filter
4 Configured as Spring beans, i.e. support dependency

injection
Handler Interceptor
/ \
request response
Controller

Intercept Request/Response

intercepting the

Request What can we do by
request??

Controller
/member/index.html

intercepting the

Response What can we do by
response??

Intercept Method Call

. What can we do
BeforeAdvice in BeforeAdvice??

Method Invocation
User getUserById(1l)

. What can we do
AfterAdvice in AfterAdvice??

Authentication Processing
Filter

Request l

AuthenticationProcessingFilter

N Y
Login Form Target URL

Authentication Manager

Y Target URL
Y
N Default URL

Login Form

#Action: j_spring_security_check
#Username: j_username
#Password: j_password

Configure Authentication Filter
Beans

#DelegatingFilterProxy in web.xml
#In spring-security.xml
m springSecurityFilterChain

m authenticationProcessingFilter

Authentication Manager

‘ Authentication Manager ‘

Authentication | | Authentication | ., | Authentication

Provider Provider Provider
Authentication
Sources
database LDAP Servlet

Container

Authentication Sources
Supported

Database # Container-based
@ LDAP = JBoss
@ JAAS . ;em_/
= ResIn
#CAS = Tomcat
OpenID
SiteMinder
#X.509

Windows NTLM

Authenticate Against a
Database ...

What SS expects your tables look like:

create table users (
username string primary key,
password string, -- encrypted
enabled boolean

)

create table authorities (
username string references users(username),
authority string -- role name

)

... Authenticate Against a
Database ...

users
username p d bled

“cysun’ md5(‘abed”) 't

‘jdoe’ md5('xyz") 'f’
authorities

username authority

‘cysun’ ‘ROLE_ADMIN’
‘cysun’ ‘ROLE_MEMBER’
‘jdoe’ ‘ROLE_MEMBER’

... Authenticate Against a
Database

#Define your owner queries if your tables
are different
m usersByUsernameQuery
m authoritiesByUsernameQuery

CSNS Example: Configure an
Authentication Manager

‘ Authentication Manager ‘

‘ Anonymous Provider ‘ ‘ DAO Provider ‘

‘ JDBC DAO Impl ‘

‘ Password Encoder

‘ MD5 ‘ ‘Data SourceH User Query ‘

Authority Query

Anonymous Authentication

#An anonymous user has their own
credentials
m AnonymousProcessingFilter

m AnonymousAuthenticationProvider

Access User Details in
Application Code

User details —
http://static.springsource.org/spring-
security/site/docs/2.0.x/apidocs/org/springfra
mework/security/userdetails/UserDetails.html
= Username
= Password
= Authorities (Roles)

Example: SecurityUtils in CSNS

Authorization (Access Control)

#Secure URL access
#Secure method invocation
% Secure object access

Access Decision Manager

‘ Access Decision Manager ‘

Access Decision| |Access Decision| ., |Access Decision
Voter Voter Voter

Role Voter coo ooo User-defined Voter

E.g. if a user is of Admin role,
then grant access.

Types of Decision Managers

w Affirmative based
#Consensus based
#Unanimous based

How Decision Voter Works

% AccessDecisonVoter Interface
% Given
» Object to be accessed
» User information: username, roles
» Configuration attributes, typically are roles names
and/or access types like READ, WRITE etc.
Return

m ACCESS_GRANTED, OF ACCESS_DENIED, Or
ACCESS_ABSTAIN

Secure URL Access

#FilterSecurityInterceptor

#CSNS Example:
= Mapping from URL patterns to roles
m RoleVoter

Secure Method Invocation

#MethodSecurityInterceptor

#CSNS Example

= Mapping from method name patterns to
roles

m RoleVoter

Secure Object Access

Implemented by checking the returned object
of a method call

€ Access decision is manage by
AfterInvocationManager

‘ AfterInvocation Manager

AfterInvocation| |AfterInvocation o |AfterInvocation
Provider Provider Provider

Secure Object Access Example

4 CSNS

m MethodSecurityInterceptor
¢ AfterInvocationManager

= Customized AfterInvocation providers to

provide application-specific access control

+ SectionAccessVoter
+ AssignmentAccessVoter
+ SubmissionAccessVoter
+ FileAccessVoter

Security Tag Library

#URI -
http://www.springframework.org/securi
ty/tags

<authorize>

= ifNotGranted, ifAllGranted, ifAnyGranted
<authentication>

= property

Usage of the Security Tag
Library

#CSNS Examples
= WEB-INF/jsp/surveys.jsp
= WEB-INF/jsp/include/header.jspf

Other Interesting Features of
Spring Security

#Simplified namespace-based
configuration syntax

#ACL based authorization
#Groups and hierarchical roles

Conclusion

#Declarative security vs. Programmatic
security

#Spring Security provides the best of
both worlds
= Declarative security framework
= Portability and flexibility
= Separate security code from regular code

