

Recommendation Systems

- Predict items a user may be interested in based on information about the user and the items
- An effective way to help people cope with information overload
- ◆Examples: Amazon, Netflix, Tivo, ...

So How Can We Do It?

- ◆The content based approach
- ◆The user feedback based approach

Collaborative Filtering

Rate items based on the ratings of other users who have similar taste as you

Problem Definitions

- Prediction
 - Given: a user and k items
 - Return: predicted rating for each item
- ◆Recommendation
 - Given: a user
 - Return: k items from the database with the highest predicted rating

Basic Assumptions

- Items are evaluated by users explicitly or implicitly
 - Ratings, reviews
 - Purchases, browsing behaviors
 - ...
- •We may map explicit and implicit evaluations to a rating scale, e.g. 1-5.

Heuristic

People who agreed in the past are likely to agree in the future

Problem Formulation

User-Item Matrix

	Item	Ken	Lee	Meg	Nan
	1	1	4	2	2
-	2	5	2	- 4	4
	3			3	
	4	2	5		5
	5	4	1		1
	6	??	2	5	

So what would be Ken's rating for Item 6??

Solving the Problem

- Intuition: Ken's rating for Item 6 is likely to be high
 - Ken's ratings are similar to Meg's
 - Ken's ratings are opposite of Lee's
- Develop the algorithm
 - Quantify rating similarity
 - 2. Calculate the predicted rating

Similarity Measure

- Pearson Correlation Coefficient
 - A measure of linear correlation of two random variables

Pearson Correlation Coefficient

 \blacklozenge Let x and y be two users, and $r_{x,\,j}$ be the rating of item i by user x

$$\begin{split} w_{x,y} &= \frac{\text{cov}(x, y)}{\sigma_{x} \sigma_{u}} \\ &= \frac{\sum_{i} (r_{x,i} - \overline{r}_{x})(r_{y,i} - \overline{r}_{y})}{\sqrt{\sum_{i} (r_{x,i} - \overline{r}_{x})^{2}} \sqrt{\sum_{i} (r_{y,i} - \overline{r}_{y})^{2}}} \end{split}$$

So what is w_{ken,lee} ?? what's the range of w_{i,j}?

Predict the Rating

- The predicted rating $p_{x,i}$ should be a function of
 - The past ratings of user x
 - The ratings of other users for item i, weighted by their similarity to user x

Predicted Rating

$$p_{x,i} = \overline{r}_x + \frac{\sum_{u} (r_{u,i} - \overline{r}_u) \times w_{x,u}}{\sum_{u} |w_{x,u}|}$$

So what is p_{ken,6} ??

Variations and Optimizations

- Similarity measure
- Significance weighting
- Item rating variance
- Neighborhood selection
- Combine neighborhood ratings

Other Similarity Measures ...

- Spearman Correlation
 - Uses ranks instead of raw rating scores
- Cosine similarity
- Mean squared difference
- Entropy-based
- **.**

... Other Similarity Measures

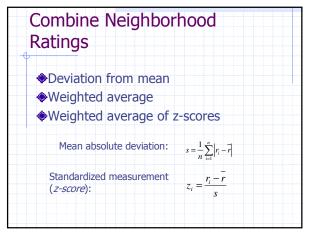
Cosine similarity: $\cos(\mathbf{X}, \mathbf{Y}) = \frac{\mathbf{X} \cdot \mathbf{Y}}{|\mathbf{X}||\mathbf{Y}|} = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}}$

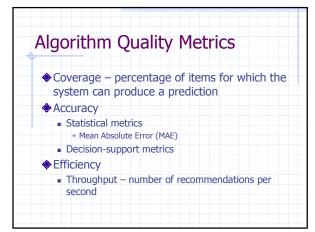
Mean squared difference: $msd(\mathbf{X}, \mathbf{Y}) = \frac{\sum (x_i - y_i)^2}{N}$

Entropy-based association: $h(X,Y) = -\sum p_{i,j} \ln p_{i,j}$

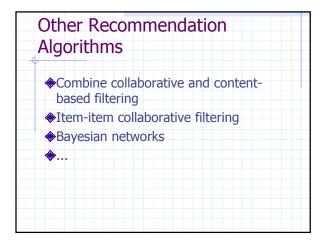
Significance Weighting

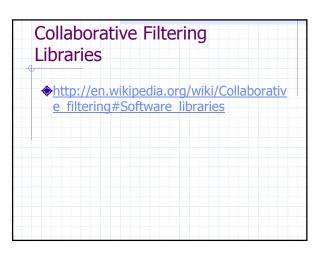
Weight users in additional to the similarity measure


$$w = \begin{cases} 1 & n \ge 50 \\ n/50 & n < 50 \end{cases}$$


where ${\tt n}$ is the number of items rated by both users.

Item Rating Variance


- Some items are more telling about tastes than others
 - E.g. "Sleepless in Seattle" is more telling about taste than "Titanic"
 - Give more weight to items with high variance in ratings


Neighborhood Selection Select a subset of users for better performance and accuracy Correlation threshold Best n neighbors

References

- ♦ GroupLens: An Open Architecture for Collaborative Filtering of Netnews by P. Resnick et. al, 1994.
- ◆An Algorithmic Framework for Performing Collaborative Filtering by J. Herlocker et. Al, 1999.
- ◆E-Commerce Recommendation Applications by J. B. Schafer et. al, 2001.