
1

CS520 Web Programming
Object-Relational Mapping with Hibernate

Chengyu Sun

California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects

So we use object-oriented languages to
write applications

We want to store some of the
application objects (a.k.a. persistent
objects)

So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
� Best performance

� Most reliable

� Widest support

Bridge between OO applications and
relational databases
� CLI and embedded SQL

� Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)

Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL

SQL statements are embedded in host
language

String name;
#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

}

2

Employee – Database Table

create table employees (

id integer primary key,
name varchar(255),
supervisor integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;
String name;
Employee supervisor;

public Employee(Integer id)
{

// access database to get name and supervisor
… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {
…
PreparedStatment p;
p = connection.prepareStatment(

“select * from employees where id = ?”
);
…

}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);
…

}
}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

…
supervisor = ??

}
}

The ORM Approach

customer

employee

account

Application

Persistent Data Store

ORM tool

Oracle, MySQL, SQL Server …
Flat files, XML …

3

Advantages of ORM

Make RDBMS look like ODBMS

Data are accessed as objects, not rows and
columns

Simplify many common operations. E.g.
System.out.println(e.supervisor.name)

Improve portability
� Use an object-oriented query language (OQL)

� Separate DB specific SQL statements from
application code

Caching

Common ORM Tools

Java Data Object (JDO)

� One of the Java specifications

� Flexible persistence options: RDBMS, OODBMS, files etc.

Hibernate
� Most popular Java ORM tool right now

� Persistence by RDBMS only

Others

� http://en.wikipedia.org/wiki/Object-relational_mapping

� http://www.theserverside.net/news/thread.tss?thread_id=29
914

Hibernate Application
Architecture

hibernate

A Simple Hibernate Application

Java classes
� Employee.java

O/R Mapping files
� Employee.hbm.xml

Hibernate configuration file
� hibernate.cfg.xml

(Optional) Logging configuration files
� Log4j.properties

Code to access the persistent objects
� EmployeeTest1.java

� EmployeeTest2.java (CRUD Example)

Java Classes

Plain Java classes (POJOs); however, it
is recommended that

� Each persistent class has an identity field

� Each persistent class implements the
Serializable interface

� Each persistent field has a pair of getter
and setter, which don’t have to be public

O/R Mapping Files

Describe how class fields are mapped to table
columns

Three important types of elements in a
mapping file
� <id>

� <property> - when the field is of simple type

� Association – when the field is of a class type
� <one-to-one>

� <many-to-one>

� <one-to-many>

� <many-to-many>

4

Hibernate Configuration Files

Tell hibernate about the DBMS and
other configuration parameters

Either hibernate.properties or
hibernate.cfg.xml or both

� Database information

� Mapping files

� show_sql

Access Persistent Objects

Session

Query

Transaction

� A transaction is required for updates

http://www.hibernate.org/hib_docs/v3/
api/org/hibernate/package-
summary.html

Hibernate Query Language
(HQL)

A query language that looks like SQL,
but for accessing objects

Automatically translated to DB-specific
SQL statements

select e from Employee e

where e.id = :id

� From all the Employee objects, find the
one whose id matches the given value

More HQL Examples

CSNS DAO Implementation classes, e.g.
� UserDaoImpl.java

� QuarterDaoImpl.java

HQL Features
� DISTINCT

� ORDER BY

� Functions

Join in HQL …

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
User instructor;
…

}

id

users sections

instructor_ididusername

… Join in HQL …

Query: find all the sections taught by
the user “cysun”.

� SQL??

� HQL??

5

… Join in HQL …

Database tables??

class User {

Integer id;
String username;
…

}

class Section {

Integer id;
Set<User> instructors;
…

}

… Join in HQL

Query: find all the sections for which
“cysun” is one of the instructors

� SQL??

� HQL??

Hibernate Mapping

Basic mapping

� <id>

� <property>

� Association

� many-to-one

Advanced mapping

� Components

� Collections

� Subclasses

hbm2ddl

Generate DDL statements from Java
classes and mapping files

db/hibernate-examples.ddl –

generated by hbm2ddl

Components

public class Address {

String street, city, state, zip;
}

public class User {

Integer id;

String username, password;
Address address;

}

Mapping Components

<component name="address" class="Address">
<property name="street"/>
<property name="city"/>
<property name="state"/>
<property name="zip"/>

</component>

users

id … street city state zip …

6

Collection of Simple Types

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

Set of Simple Types

<set name="phones" table="phones">
<key column="customer_id"/>
<element type="string" column="phone"/>

</set>

id

customers phones

customer_id phone

List of Simple Types

<list name="phones" table="phones">
<key column="customer_id"/>
<index column=“phone_order"/>
<element type="string" column="phone"/>

</list>

id

customers phones

customer_id phone phone_order

Collection of Object Types

public class Account {

Integer id;

Double balance;
Date createdOn;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;
Set<Account> accounts;

}

Issues Related to Collections
of Object Types

Set, List, and Sorted Set

Association

� one-to-many

� many-to-many

Cascading behaviors

Lazy loading

Unidirectional vs. Bidirectional

Set of Objects

<set name=“accounts">
<key column=“customer_id” />
<one-to-many class=“Account” />

</set>

Database tables??

7

List of Objects

<list name=“accounts">
<key column=“customer_id” />
<index column=“account_order” />
<one-to-many class=“Account” />

</list>

Database tables??

Sorted Set of Objects …

order-by

Objects are sorted in SQL
� created_on is a column, not a property

Use LinkedHashSet on Java side

<set name=“accounts" order-by=“created_on asc”>
<key column=“customer_id” />
<one-to-many class=“Account” />

</set>

… Sorted Set of Objects

sort

Objects are sorted in Java

Use SortedSet, e.g. TreeSet, on Java side

Element class must implements the Comparable
interface; otherwise a Comparator class must be

provided

<set name=“accounts" sort=“natural”>
<key column=“customer_id"/>
<one-to-many class=“Account” />

</set>

Cascading Behaviors

Customer c = new Customer(“cysun”);
Account a1 = new Account();
Account a2 = new Account();
c.getAccounts().add(a1);
c.getAccounts().add(a2);

session.saveOrUpdate(c); // will a1 and a2 be saved as well?

c.getAccounts().remove(a1);
session.saveOrUpdate(c); // will a1 be deleted from db??

session.delete(c); // will a1/a2 be deleted from db??

Cascading Behaviors in
Hibernate

none (default)

save-update

delete

all (save-update + delete)

delete-orphan

all-delete-orphan (all + delete-orphan)

Lazy Loading

Collections are not loaded until they are
used

But sometimes we want to be “eager”

� Performance optimization, i.e. reduce the
number of query requests

� Disconnected clients

Join fetch

from Customers c left join fetch c.accounts

8

Bidirectional Association – OO
Design #1

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;
Set<Account> accounts;

}

Unidirectional Association –
OO Design #2

public class Account {

Integer id;

Double balance;
Date createdOn;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;
Set<Account> accounts;

}

Unidirectional Association –
OO Design #3

public class Account {

Integer id;

Double balance;
Date createdOn;

Customer owner;

}

public class Customer {

Integer id;

String name;
String address;

Set<String> phones;

}

Unidirectional vs. Bidirectional

Do the three OO designs result in
different database schemas??

Does it make any difference on the
application side??

Which one is the best??

Mapping Bidirectional
Associations

<class name=“Customer" table=“customers">
...
<set name="accounts" inverse="true">

<key column=“customer_id" />
<one-to-many class="Account" />

</set>
</class>

<class name=“Account" table=“accounts">
...
<many-to-one class=“Customer ” column=“customer_id ” />

</class>

Inheritance

public class CDAccount extends Account {

Integer term;

}

9

Table Per Concrete Class

id balance created_on

accounts

id balance created_on term

cd_accounts

Table Per Concrete Class

Mapping strategy #1: map them as two
completely unrelated classes

Mapping strategy #2: <union-subclass>

� Polymorphic query

id balance created_on

accounts

id balance created_on term

cd_accounts

Table Per Subclass

id balance created_onaccounts

account_id termcd_accounts

<joined-subclass name="CDAccount" table="cd_accounts">
<key column="account_id"/>
<property name="term"/>

</joined-subclass>

Table Per Hierarchy

<subclass name="CDAccount" discriminator-value="CD">
<property name="term"/>

</subclass>

<discriminator column="account_type" type="string"/>

id account_type balance created_on term

accounts

O/R Mapping vs. ER-Relational
Conversion

O/R Mapping ER-Relational Conversion

Class Entity Set

<property> Attribute

Association Relationship

Subclass
• table per concrete class
• table per class hierarchy
• table per subclass

Subclass
• OO method
• NULL method
• ER method

Tips for Hibernate Mapping

Understand relational design

� Know what the database schema should
looks like before doing the mapping

Understand OO design

� Make sure the application design is object-
oriented

10

Hibernate Support in Spring

Transaction tx = null;
try

{
tx = s.beginTransaction();
s.saveOrUpdate(e);
tx.commit();

}
catch(Exception e)
{
if(tx != null) tx.rollback();
e.printStackTrace();

}

Without Spring

getHibernateTemplate()
.saveOrUpdate(user);

With Spring

Caching in Hibernate

Object cache

� Caching Java objects

� Simple and effective implementation

� Hash objects using identifiers as key

Query cache

� Caching query results

� No implementation that is both simple and
effective

Cache Scopes

Session

Process

Cluster

First-Level Cache

Session scope

Always on (and cannot be turned off)

Ensure that there are no
duplicate/inconsistent objects in the
same session

Second-Level Cache

Pluggable Cache Providers

� Process cache
� E.g. EHCache, OSCache

� Cluster cache
� E.g. SwarmCache, JBossCache

Distinguished by

� Cache scope

� Concurrency policies

Isolation Example …

Sue is querying Sells for the highest and
lowest price Joe charges.

Joe decides to stop selling Bud and Miller, but
to sell only Heineken at $3.50

bar beer price

Joe’s Bud 2.50

Joe’s Miller 2.75

Sue’s Bud 2.50

Sue’s Miller 3.00

Sells

11

… Isolation Example

Sue’s transaction:
-- MAX
SELECT MAX(price) FROM Sells WHERE bar=‘Joe’’s’;

-- MIN
SELECT MIN(price) FROM Sells WHERE bar=‘Joe’’s’;
COMMIT;

Joe’s transaction:
-- DEL
DELETE FROM Sells WHERE bar=‘Joe’’s’;

-- INS
INSERT INTO Sells VALUES(‘Joe’’s’, ‘Heineken’, 3.50);
COMMIT;

Potential Problems of
Concurrent Transactions

Caused by interleaving operations

Caused by aborted operations

For example:

� MAX, DEL, MIN, INS

� MAX, DEL, INS, MIN

Transaction Isolation Levels

Read Uncommitted

Read Committed

Read Repeatable

Serializable

- Conflicting writes

- Dirty reads

- Non-repeatable reads

- Phantom reads

Currency Support of Hibernate
Cache Providers

Read-only Non-strict
Read-Write

Read-Write Transactional

EHCache X X X

OSCache X X X

SwarmCache X X

JBossCache X X

Readings

Java Persistence with Hibernate by
Christian Bauer and Gavin King (or
Hibernate in Action by the same
authors)

Hibernate Core reference at
http://www.hibernate.org

� Chapter 3-10, 14

More Readings

Database Systems – The Complete Book by
Garcia-Molina, Ullman, and Widom

� Chapter 2: ER Model

� Chapter 3.2-3.3: ER to Relational Conversion

� Chapter 4.1-4.4: OO Concepts in Databases

� Chapter 9: OQL

� Chapter 8.7: Transactions

