Lectures: |
Monday and
Wednesday 4:20pm - 6:00pm, in E&T
A210 |
|||||||||||||||||||||||||||
Instructor: |
Chengyu Sun Email: csun@calstatela.edu Office: E&T A317 Office Hours: MW 2-4pm and F 3-5pm, or by appointment, in E&T A317 |
|||||||||||||||||||||||||||
Course
Description: |
This is an
introductory course on data mining. We will cover concepts, algorithms,
and applications in data warehousing and OLAP, mining frequent patterns
and association rules, classification and predication, and cluster
analysis. |
|||||||||||||||||||||||||||
Prerequisites: |
CS422 and CS491 |
|||||||||||||||||||||||||||
Textbook(s): | Data Mining: Concepts and
Techniques, by Jiawei Han and Micheline Kamber Optional: Introduction to Data Mining, by Pang-Ning Tan, Michael Steinbach, Vipin Kumar |
|||||||||||||||||||||||||||
Software
Tools: |
Required - Email Optional (for access online lecture notes) - Adobe Acroread and/or MS PowerPoint |
|||||||||||||||||||||||||||
Grading Policy: |
Homeworks and Projects 60%, Midterm 20%, Final 20% |
|||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||
Schedule: |
|
|||||||||||||||||||||||||||
Online Resources: |
|
|||||||||||||||||||||||||||
Academic
Integrity: |
Cheating will not
be tolerated.
Cheating on any assignment or exam will be taken seriously.
All
parties involved will receive a grade of F for the course
and be reported to
the Academic Senate. |