

	nsactions
TID	Transactions
1	Beef, Chicken, Milk
2	Beef, Cheese
3	Cheese, Boots
4	Beef, Chicken, Cheese
5	Beef, Chicken, Clothes, Cheese, Milk
6	Chicken, Clothes, Milk
7	Chicken, Clothes, Milk
8	Beef, Milk

The Need for Closed Frequent Itemsets

Two transactions

- $<a_1, a_2, ..., a_{100}>$ and $<a_1, a_2, ..., a_{50}>$
- �min_sup=1
- # of frequent itemsets??

Closed Frequent Itemset

- An itemset X is closed if there exists no proper superset of X that has the same support count
- A closed frequent itemset is an itemset that is both *closed* and *frequent*

Closed Frequent Itemset Example

Two transactions

■ <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀> \$min_sup=1

Closed frequent itemset(s)??

Maximal Frequent Itemset

- An itemset X is a maximal frequent itemset if X is frequent and there exists no *proper superset* of X that is also frequent
- Example: if {a,b,c} is a maximal frequent itemset, which one of these cannot be a MFI
 - {a,b,c,d}, {a,c}, {b,d}

Maximal Frequent Itemset Example

- Two transactions
- <a₁, a₂,..., a₁₀₀> and <a₁, a₂,..., a₅₀> \$min_sup=1
- Maximal frequent itemset(s)??
- Maximal frequent itemset vs. closed frequent itemset??

From Frequent Itemsets to Association Rules

- $\{\texttt{chicken},\texttt{cheese}\}$ is a frequent set
- $\{ chicken \} \Rightarrow \{ cheese \}??$
- $Or is it {cheese} \Rightarrow {chicken}??$

Association Rules

♦A⇒B
■ A and B are itemsets

- **A**∩**B**=Ø

Support

The support of $A \Rightarrow B$ is the percentage of the transactions that contain $A \cup B$

support($A \Rightarrow B$) = $P(A \cup B) = \frac{\text{support}_\text{count}(A \cup B)}{|D|}$

 $P\left(A\cup B\right)$ is the probability that a transaction contains $A\cup B$ D is the set of the transactions

Confidence

The confidence of A⇒B is the percentage of the transactions containing A that also contains B

 $\operatorname{confidence}(A \Rightarrow B) = P(B | A) = \frac{\operatorname{support_count}(A \cup B)}{\operatorname{support_count}(A)}$

Support and Confidence Example

- {chicken}⇒{cheese}??
- $\{cheese\} \Rightarrow \{chicken\}??$

Strong Association Rule

- Why do we need both support and confidence??

Association Rule Mining

Find strong association rules

- Find all frequent itemsets
- Generate strong association rules from the frequent itemsets

The Apriori Property

- All nonempty subsets of a frequent itemset must also be frequent
- Or, if an itemset is not frequent, its supersets cannot be frequent either

Finding Frequent Itemsets – The Apriori Algorithm

- ♦Given min_sup
- $\ensuremath{\circledast}\xspace$ Find the frequent 1-itemsets \mathtt{L}_{1}
- $\$ Find the the frequent k-itemsets \mathtt{L}_{k} by joining the itemsets in \mathtt{L}_{k-1}
- $\ensuremath{\circledast}\xspace{1mm}\ensuremath{\mathsf{Stop}}\xspace{1mm}$ when \mathtt{L}_k is empty

L <u>1</u>			
Scan the data once to get the count of	C1	support_count	L ₁
each item	{1}	5	{1}
Remove the items	{2}	5	{2}
that do not meet min_sup	{3}	5	{3}
	{4}	4	{4}
	{5}	1	
	{6}	3	{6}

From C_k to L_k

- Reduce the size of C_k using the Apriori property
 - any (k-1)-subset of an candidate must be frequent, i.e. in ${\tt L}_{\tt k-1}$
- Scan the dataset to get the support counts

Generate Association Rules from Frequent Itemsets

- For each frequent itemset 1, generate all nonempty subset of 1

Confidence-based Pruning ...

- $conf({a,b} \Rightarrow {c,d}) < min_conf$
 - conf($\{a\} \Rightarrow \{c,d\}$)??
 - conf({a,b,e}⇒{c,d})??
 - conf($\{a\} \Rightarrow \{b, c, d\}$)??

... Confidence-based Pruning

∎ ??

Limitations of the Apriori Algorithm

- Multiple scans of the datasets
 How many??
- Need to generate a large number of candidate sets

FP-Growth Algorithm

- Frequent-pattern Growth
- Mine frequent itemsets without candidate generation

FP-Grov	wth	Example	
_	TID	Transactions	
	1	I1, I2, I5	
	2	12, 14	
	3	12, 13, 16	
	4	I1, I2, I4	min sup=2
	5	I1, I3	
	6	I2, I3	
	7	I1, I3	
	8	I1, I2, I3, I5	
	9	I1, I2, I3	
		1	

- Each transaction is processed in L order (why??) and becomes a branch in the FP tree
- \mathbf{E} Each node is linked from L

... Mining The FP-tree – I3

All frequent patterns with suffix I3

 $\{I2,I1,I3:2\},$ and $\{I2,I3:4\},$ $\{I1,I3:4\},$ and $\{I3:6\}$

Optimization Techniques

- Data partitioning
- Vertical data format
- Pruning conditions for mining closed frequent itemsets
 - Superset and subset checking
 Pattern tree

Data Partitioning

- Divide dataset into n non-overlapping partitions such that each partition fits into main memory
- Find local frequent itemsets in each partition
 with min_sup (1 scan)
- All local frequent itemsets form a candidate set
- Does it include all global frequent itemsets??
 Find global frequent itemsets from candidates (1 scan)

Correlation Measures for Association Rules

♦Lift

- ¢χ²
- All_confidence
- Cosine

	game	!game	total
video	??	??	??
!video	??	??	??
total	??	??	??

χ ² Exam Frequen	-	served	
	male	female	total
fiction	250	200	450
non-fiction	50	1000	1050
total	300	1200	1500

χ ² Examp Frequenc		pected	
	male	female	total
fiction	??	??	450
non-fiction	??	??	1050
total	300	1200	1500

Continge	Contingency Table and χ^2					
	male	female	total			
fiction	250(90)	200(360)	450			
non-fiction	50(210)	1000(840)	1050			
total	300	1200	1500			
χ ² =(250-90) ² /90+(=507.93	50-210)²/210+(2	200-360) ² /360+(10	000-840)²/840			

Choo Meas	-				on			
datasets	mc	m′c	mc'	m′c′	all_conf	cosine	lift	χ^2
A_1	1,000	100	100	100,000	0.91	0.91	83.64	83,452.
A ₂	1,000	100	100	10,000	0.91	0.91	9.26	9,055.7
A ₃	1,000	100	100	1,000	0.91	0.91	1.82	1,472.7
A ₄	1,000	100	100	0	0.91	0.91	0.99	9.9
В	1,000	1,000	1,000	1,000	0.50	0.50	1.00	0.0
					n both mi in neither			e

... Choosing Correlation Measures

- $all_confidence and cosine are null-invariant, while lift and <math display="inline">\chi^2$ are not
- @all_confidence has the Apriori
 property

Mining Sequential Patterns

- \$ <{computer},{printer},{printer
 cartridge}>
- <{bread,milk},{bread,milk},{bread,milk},...>
- { home.jsp}, {search.jsp}, {product.jsp}
 , {product.jsp}, {search.jsp}...>

E.g. <(a)(abc)(bc)(d)(ac)(f)>

The length of a sequence is the number of items in the sequence, i.e. not the number of events

Sequences vs. Itemsets

€{a,b,c}

- # of 3-itemset(s)??
- # of 3-sequence(s)??

Subsequence

- $A = \langle a_1 a_2 a_3 \dots a_n \rangle$
- ♦B=<b₁b₂b₃...b_m>
- A is a *subsequence* of B if there exists $1 \le j_1 < j_2 < ... < j_n \le m$ such that $a_1 \subseteq b_{j1}, a_2 \subseteq b_{j2}, ..., a_n \subseteq b_{jn}$

Subsequence Example

Sequential Pattern

- If A is a subsequence of B, we say B contains A
- The support count of A is the number of sequences that contain A
- ♦A is *frequent* if support_count(A)≥min_sup
- A frequent sequence is called a sequential pattern

Apriori Property Again

Every nonempty subsequence of a frequent sequence is frequent

GSP Algorithm

- Generalized Sequential Patterns
- An extension of the Apriori algorithm for mining sequential patterns

_	SID	Sequence	
	1	<(a)(ab)(a)>	
	2	<(a)(c)(bc)>	
	3	<(ab)(c)(b)>	min_sup=2
	4	<(a)(c)(c)>	

000000

- 	C ₂ suppo	ort_count	L ₂	
	<(a)(a)> <(a)(b)> <(a)(c)> <(b)(a)> <(b)(b)>	1 3 3 1	<(a)(b)> <(a)(c)>	
	<(b)(c)> <(c)(a)> <(c)(b)> <(c)(c)> <(ab)> <(ac)> <(bc)>	1 0 2 2 2 0 1	<(c)(b)> <(c)(c)> <(ab)>	

From L_{k-1} to C_k

- Two sequences s_1 and s_2 are joinable if the subsequence obtained by dropping the first item in s_1 is the same as the subsequence obtained by dropping the last item in s_2
- \clubsuit The joined sequence is \mathbf{s}_1 concatenated with the last item i of \mathbf{s}_2
 - If the last two items in s₂ are in the same event, i is merged into the last event of s₁;
 - Otherwise i becomes a separate event

 Optimizations: partitioning, vertical data format, various pruning techniques