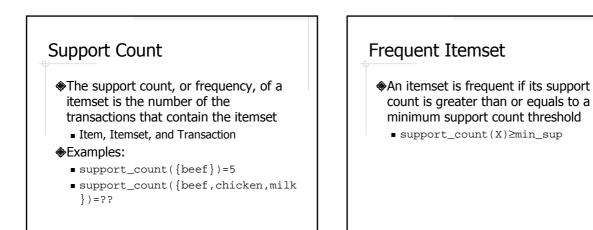


	nsactions
TID	Transactions
1	Beef, Chicken, Milk
2	Beef, Cheese
3	Cheese, Boots
4	Beef, Chicken, Cheese
5	Beef, Chicken, Clothes, Cheese, Milk
6	Chicken, Clothes, Milk
7	Chicken, Clothes, Milk
8	Beef, Milk



The Need for Closed Frequent Itemsets

Two transactions

- $<a_1, a_2, ..., a_{100}>$ and $<a_1, a_2, ..., a_{50}>$
- �min_sup=1
- # of frequent itemsets??

Closed Frequent Itemset

- An itemset X is closed if there exists no proper superset of X that has the same support count
- A closed frequent itemset is an itemset that is both *closed* and *frequent*

Closed Frequent Itemset Example

Two transactions

■ <a₁, a₂, ..., a₁₀₀> and <a₁, a₂, ..., a₅₀> \$min_sup=1

Closed frequent itemset(s)??

Maximal Frequent Itemset

- An itemset X is a maximal frequent itemset if X is frequent and there exists no *proper superset* of X that is also frequent
- Example: if {a,b,c} is a maximal frequent itemset, which one of these cannot be a MFI
 - {a,b,c,d}, {a,c}, {b,d}

Maximal Frequent Itemset Example

From Frequent Itemsets to Association Rules

- $\{$ chicken,milk $\}$ is a frequent set
- \${chicken}⇒{milk}??
- $Or is it {milk} \Rightarrow {chicken}??$

Association Rules

♦A⇒B
■ A and B are itemsets

■ **A**∩**B**=Ø

Support

The support of A⇒B is the percentage of the transactions that contain A∪B

 $\operatorname{support}(A \Longrightarrow B) = P(A \cup B) = \frac{\operatorname{support_count}(A \cup B)}{|D|}$

 $P(A\cup B)$ is the probability that a transaction contains $A\cup B$ D is the set of the transactions

Confidence

The confidence of A⇒B is the percentage of the transactions containing A that also contains B

 $\operatorname{confidence}(A \Rightarrow B) = P(B | A) = \frac{\operatorname{support_count}(A \cup B)}{\operatorname{support_count}(A)}$

Support and Confidence Example

\${chicken}⇒{milk}??
\${milk}⇒{chicken}??

Strong Association Rule

- Why do we need both support and confidence??

Association Rule Mining

Find strong association rules

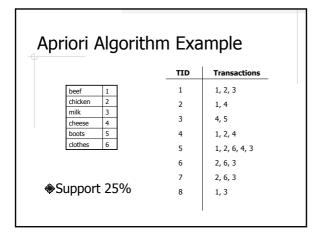
- Find all frequent itemsets
- Generate strong association rules from the frequent itemsets

The Apriori Property

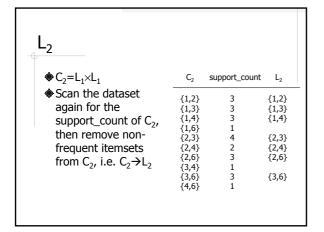
- All nonempty subsets of a frequent itemset must also be frequent
- Or, if an itemset is not frequent, its supersets cannot be frequent either

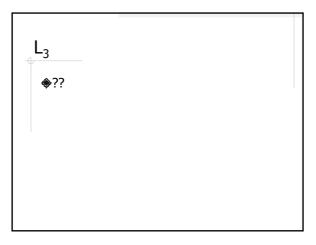
Finding Frequent Itemsets – The Apriori Algorithm

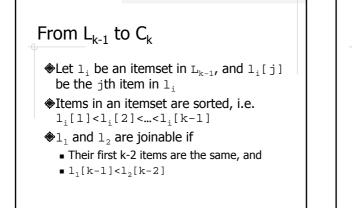
- ♦Given min_sup
- $\ensuremath{\circledast}\xspace$ Find the frequent 1-itemsets \mathtt{L}_{1}
- $\$ Find the the frequent k-itemsets \mathtt{L}_{k} by joining the itemsets in \mathtt{L}_{k-1}
- $\ensuremath{\circledast}\xspace{1mm}$ Stop when $\ensuremath{\mathbb{L}_k}$ is empty



L ₁				
Scan the data once to get the count of	C_1	support_count	L_1	
each item	{1}	5	{1}	
Remove the items	{2}	5	{2}	
that do not meet min_sup	{3}	5	{3}	
	{4}	4	{4}	
	{5}	1		
	{6}	3	{6}	







From C_k to L_k

- $\$ Reduce the size of ${\tt C}_{\tt k}$ using the Apriori property
 - any (k-1)-subset of an candidate must be frequent, i.e. in ${\tt L}_{\tt k-1}$
- Scan the dataset to get the support counts

Generate Association Rules from Frequent Itemsets

- For each frequent itemset 1, generate all nonempty subset of 1

Confidence-based Pruning ...

- $conf({a,b} \Rightarrow {c,d}) < min_conf$
 - conf($\{a\} \Rightarrow \{c,d\}$)??
 - conf($\{a,b,e\} \Rightarrow \{c,d\}$)??

... Confidence-based Pruning

- ◆If conf(s⇒(l-s))<min_conf, then conf(s'⇒(l-s'))<min_conf where s'⊆s.
 - $conf({a,b} \Rightarrow {c,d}) < min_conf$.?

Limitations of the Apriori Algorithm

- Multiple scans of the datasets
 How many??
- Need to generate a large number of candidate sets

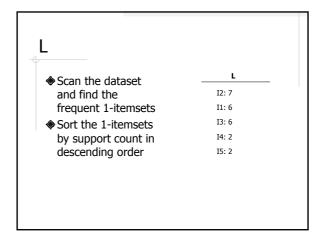
Partitioning

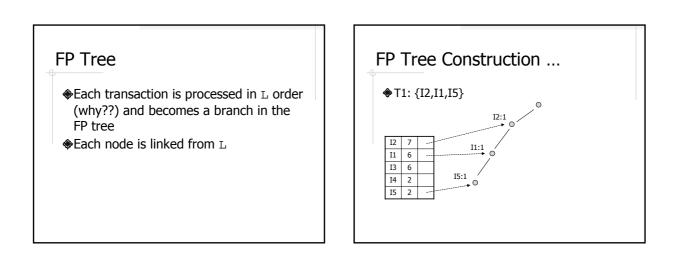
- Divide dataset into n non-overlapping partitions such that each partition fits into main memory
- Find local frequent itemsets in each partition with min_sup (1 scan)
- All local frequent itemsets form a candidate set
- Does it include all global frequent itemsets??
- Find global frequent itemsets from candicates (1 scan)

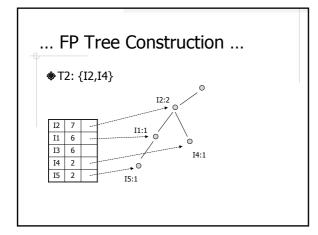
FP-Growth Algorithm

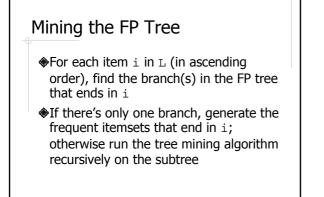
- Frequent-pattern Growth
- Mine frequent itemsets without candidate generation

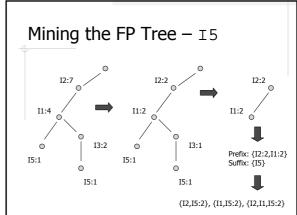
FP-Growth Example							
TI	D 1	Transactions					
1		I1, I2, I5					
2		I2, I4					
3		I2, I3					
4		I1, I2, I4	min_sup=2				
5		I1, I3	_				
6		12, 13					
7		I1, I3					
8		I1, I2, I3, I5					
9		I1, I2, I3					
	1						

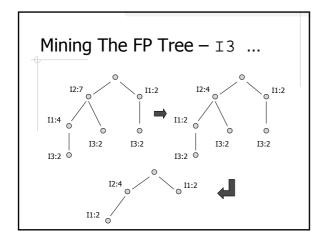


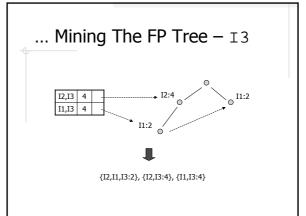


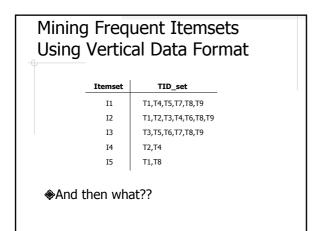


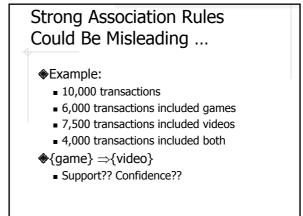


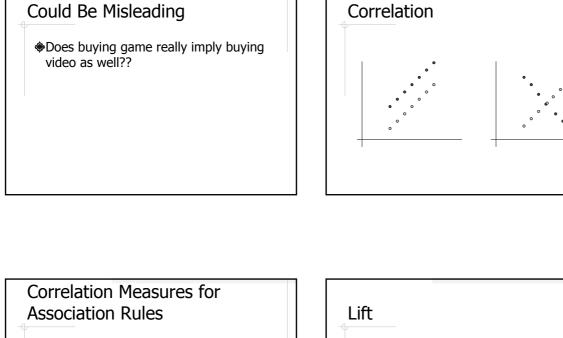


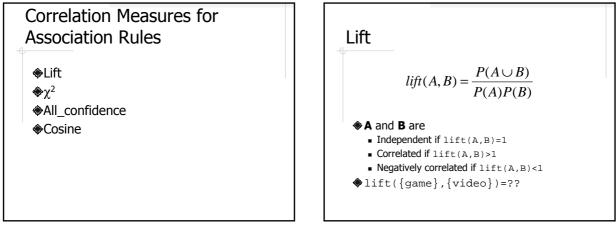


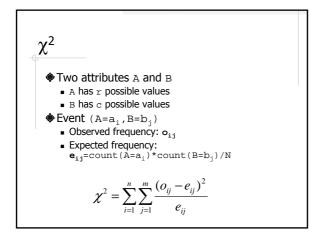










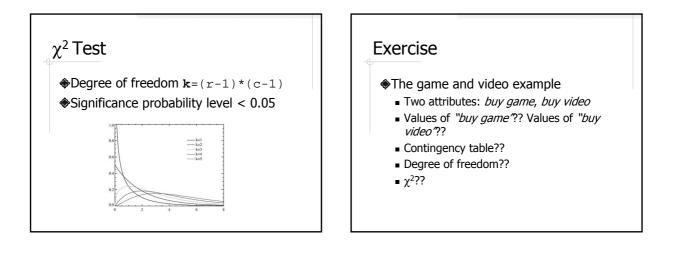


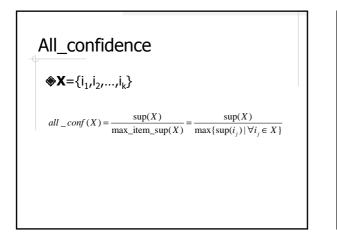
... Strong Association Rules

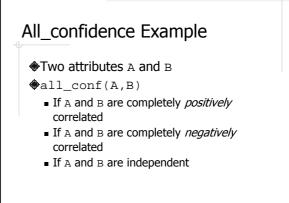
χ^2 Example – Observed Frequency								
	male	female	total					
fiction	250	200	450					
non-fiction	50	1000	1050					
total	300	1200	1500					

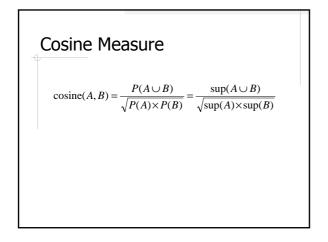
χ^2 Example – Expected Frequency							
	male	female	total				
fiction	??	??	450				
non-fiction	??	??	1050				
total	300	1200	1500				

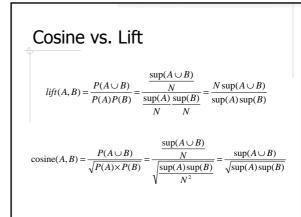
Contingency Table and χ^2								
	male	female	total					
fiction	250(90)	200(360)	450					
non-fiction	50(210)	1000(840)	1050					
total	300	1200	1500					
χ^2 =(250-90) ² /90+(50-210) ² /210+(200-360) ² /360+(1000-840) ² /840 =507.93								











-0	Choosing Correlation Measures									
	datasets	mc	m′c	mc'	m′c′	all_conf	cosine	lift	χ^2	
	A_1	1,000	100	100	100,000	0.91	0.91	83.64	83,452.6	
	A ₂	1,000	100	100	10,000	0.91	0.91	9.26	9,055.7	
	A ₃	1,000	100	100	1,000	0.91	0.91	1.82	1,472.7	
	A ₄	1,000	100	100	0	0.91	0.91	0.99	9.9	
	В	1,000	1,000	1,000	1,000	0.50	0.50	1.00	0.0	
	mc: # of transactions that contain both milk and coffee m'c': # of transactions that contain neither milk nor coffee									

... Choosing Correlation Measures

- $all_confidence$ and cosine are null-invariant, while lift and χ^2 are not

Mining Sequential Patterns

- <{computer},{printer},{printer
 cartridge}>
- <{bread,milk},{bread,milk},{bread,milk},.>
- { home.jsp}, {search.jsp}, {product.jsp}
 , {product.jsp}, {search.jsp}...>

Terminology and Notations

- Item, itemset
- Event = itemset
- $\ensuremath{\circledast}\ensuremath{\mathsf{A}}$ sequence is an ordered list of events
 - $< e_1 e_2 e_3 \dots e_l >$
 - E.g. <(a)(abc)(bc)(d)(ac)(f)>
- The length of a sequence is the number of items in the sequence, i.e. not the number of events

Sequences vs. Itemsets

◆{a,b,c}

- # of 3-itemset(s)??
 # of 3 converses(s)?
- # of 3-sequence(s)??

Subsequence

- A=<a₁a₂a₃...a_n>
- $B = \langle b_1 b_2 b_3 \dots b_m \rangle$
- $\label{eq:alpha} & \texttt{A} \text{ is a } subsequence \text{ of } \texttt{B} \text{ if there exists} \\ 1 \leq j_1 < j_2 < \ldots < j_n \leq m \text{ such that } a_1 \subseteq b_{j1}, a_2 \\ \subseteq b_{j2}, \ldots, a_n \subseteq b_{jn}$

Subsequence Example

\$\$ s = < (abc) (de) (f) >

What are the subsequences of s??

Sequential Pattern

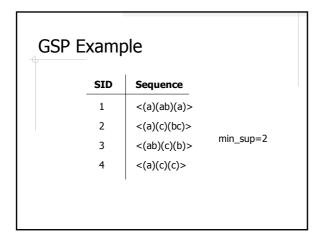
- If A is a subsequence of B, we say B contains A
- The support count of A is the number of sequences that contain A
- A frequent sequence is called a sequential pattern

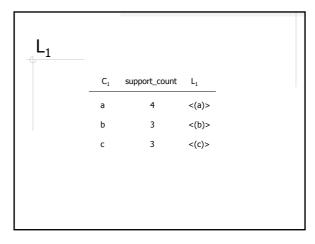
Apriori Property Again

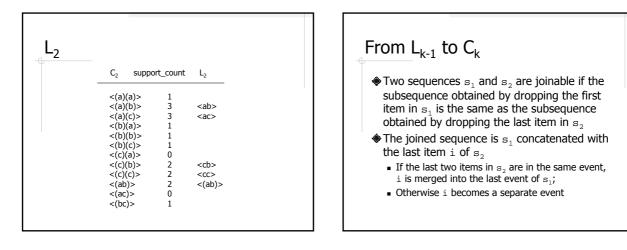
Every nonempty subsequence of a frequent sequence is frequent

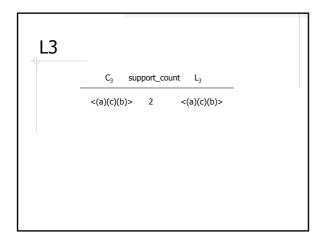
GSP Algorithm

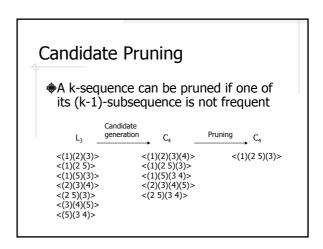
- Generalized Sequential Patterns
- An extension of the Apriori algorithm for mining sequential patterns











Summary

- Frequent itemsets, association rules, sequential patterns

 - Measures: support, confidence, correlation
 Algorithms: Apriori, FP-Growth, vertical data format, rule generation, GPS