CS522 Advanced Database Systems

Data Cube Computation

Chengyu Sun
California State University, Los Angeles

The Data

rid | gender| age education address| salary
1001 M 24 High school LA,CA 100K
1002 F 25 College LA,CA 60K
1003 M 36 College NY,NY 65K
1004 M 61 Graduate school | NY,NY 120K
1005 F 18 College NY,NY 40K
1006 F 29 Graduate school NY,NY 50K
1007 F 55 High school SD,CA 35K
1008 M 45 Middle school SD,CA 30K

The Data Cube

4 Dimensions
= Gender: M, F

= Age: Below 20, 20-30, 30-40, 40-50,
50-60, above 60

= Education: Below High School, High
School, College, Graduate School

= Address: City

4 Aggregation function (Measure)
= Average salary

About The Data Cube

@ # of cuboids??
@ # of cells??

#Data in a cuboid??

= E.g. cuboid(age,gender) ,
cuboid(gender,age,address)

Observations about Data
Cubes ...

#How did a few tuples turn into so much
data?
= Many cells contain no data (or 0)
+ E.g. (M,60+,College,LA)

= Many aggregation values are the same
+E.g.(M,20-30,HS,LA) , (M,20-30,LA) , and
(M,LA)

... Observations about Data
Cubes

Observations
= Curse of Dimensionality
= Sparsity
= Closed coverage

4 Solutions

= Partial computation of data cube
+ Iceberg Cube
+ Shell Cube

= Cube compression

Cell

#A cell in a n-dimensional cube:
(a,a,,...,a,measure)

@43, is either a value or *

#A cell is a mdimensional cell if exactly m
valuesin {a,a,,...,a,} arenot*

#Base cell: m=n

#Aggregate cell: m<n

Cell Examples

®C1: (*,** LA,80K)

#C2: (M,*,*,LA,100K)
#C3: (M,20-30,HS, LA, 100K)
®C4: (F,* *,SD,35K)

#C5: (*,* * SD,33K)

Ancestor and Descendent
Cells

#®Ani-Dcella=(a,,a,,....a,measure ,) is
an ancestor of a j -D cell
b= ,,b ,,...,b ,,measure) iff
= i<j ,and
= For 1<n¥n, a,=b,whenever a z*
#a is a parent of b (and b a child of a)
= a is an ancestor of b, and
w jEitl

Ancestor and Descendent
Examples

®C1: (%% LA,80K)

®C2: (M,* * LA, 100K)
#C3: (M,20-30,HS,LA, 100K)
#C4: (F,**,SD,35K)

®C5: (*,*,*,SD,33K)

Closed Cell

@A cell c is a closed cell if there is no
descendent of ¢ that has the same
measure as ¢

Closed Cell Examples

#Which of the following are closed
cells??
= C1: (*,*,*,LA,80K)
 C2: (M,*,*,LA,100K)
= C3: (M,20-30,HS,LA,100K)
= C4: (F,*,*,SD,35K)
= C5: (*,*,*,SD,33K)

Closed Cube

@A closed cube is a data cube consisting
of only closed cells

What's the closed cube of the following data??

rid |gender | age | education | address | salary
1001 M 24 High school LA,CA 100K
1002 F 25 College LA,CA 60K

Query a Closed Cube

@(*,*,*,*, 7a
@(*,*,*,LA, ?a
®(M,* * LA, ?7)
#(*,*, College,SD, 7?)

Full Cube Computation

#Approach 1: one group-by at a time
= 2" scans
#Approach 2: single scan??

Order Matters ...

all (1)
[©]

gender (2) /&1’9(&(6)\ education (4)
o o o

o o o
gender,age (12) &denedw age,education (24)
o

gender,age,education (48)

... Order Matters ...

rid | gender| age education salary
1001 M 20-30 High school 100K
1003 M 30-40 College 65K
1008 M 40-50 < High School 30K
1004 M >60 Graduate school 120K
1005 F <20 College 40K
1002 F 20-30 College 60K
1006 F 20-30 Graduate school 50K
1007 F 50-60 High school 35K

... Order Matters

#2D Cells need to be kept in memory
= Read unsorted: 12 + 8 + 24
= Read sorted: ??

Multiway Array Aggregation

Use a multidimensional array store the base
cuboid

% Partition the array into chunks such that each
chunk can fit into the memory

4 Read in each chunk in certain order to
compute the aggregates

Order Matters (Again)

#Three dimensions
= A: cardinality=40, partitions=4
= B: cardinality=400, partitions=4
= C: cardinality=4000, partitions=4
#Consider the following orders
= aybyCo,a1DCq,a,b0C0;---,89D1Cy - @3D3C3
= byagCo,018¢Co,0280C0; /D1 Cos - D383C3
= Cobgag,C1bgag, 0020, -,Cob1@y, -, C3D5a3

Iceberg Cubes

#Data cubes that contain only cells with
aggregates greater than a minimum
threshold (minimum threshold support,
or minimum support)

The Apriori Property

#If a cell does not satisfy minimum
support, then no descendant of the cell
can satisfy the minimum support

#Anti-monotonic aggregation functions
= E.g. count , sum

Non-monotonic aggregation functions??

BUC (Bottom-Up Construction)

BUC(input, dim)
aggregate(input) // place result in outputRec
if(input.count() == 1) the
WriteAncestors(input[0],dim); return;
endif
write outputRec
for(d=dim ; d < numDims ; ++d)
C = cardinality[d]
Partition(input,d,C,dataCount[d])
k=0

for(i=0;i<C; ++i)
¢ = dataCount[d][i]
if ¢ >= min_sup
outputRec.dim[d] = input[k].dim[d]
BUC(input[k...k+c],d+1)
endif
k+=c
endfor
outputRec.dim[d] = all
endfor

BUC Example

A B C Count # Aggregates

a, b < 5 n (%,%,%,32)

* (a;,%*,12)
v A

a, b, c 3

a3,b,,%,7,
a; b, c, 4 * Cuban?)
a, b [6

Threr

* (ay*,*,20)

a. b. C. 10 "

oz o (%by*21)

a, b, [4 .

o (%%, 14)

4 Construct an Iceberg "
cube with count>5

About BUC

@It is actually 7op-Down

#Dimensions should be processed in
order of decreasing cardinality

#®Take advantage of the Apriori property

#Does not share computation costs

between parent and child group-bys
(unlike Star-Cubing)

Dealing with Non-Monotonic
Measures

#Example: Compute an Iceberg cube of
count(*) =2 and
average(salary)>40k

Transform Non-monotonic
Measures

#Cell ¢ covers n non-empty base cells

#avgk(c) : the average of top k base
cells covered by ¢

#count =k and avg =x = avgk(c) =x

= What if we remove the count >k
condition??

Problems of Iceberg Cubes

#May still be too large

#Incremental updates require
recomputation of the whole cube

#Minimum support is hard to determine

Cube Shells

#Observation: most OLAP operations are
performed on a small number of
dimensions at a time

#A cube shell of a data cube consists of
the cuboids up to a certain dimension

= E.g. all cuboids with 3 dimensions or less in
a 60-dimension data cube

Problems with Cube Shells

#They may still be too large
= E.g. how many cuboids in a 3-D shell of a
60-D data cube??
#They can't be used to answer queries
like
(location,product_type,suppli
er,2004,7?)

Shell Fragments

#Compute only parts of a cube shell —
shell fragments

#Answer queries using the precomputed
data

Shell Fragment Example

1 a, by ¢ dy €
2 a, b, ¢ d, e
3 a; b, [e,
4 a, b ¢ d e,
5

a, b G 4 €3

Shell Fragments Computation

(1)

#Partition the dimension into non-
overlapping groups — fragments

(a,b,c,d,e) & (a,b,c) and (d,e)

Shell Fragments Computation

(2)

#Scan the base cuboid and construct an
inverted index for each attribute

Attribute value TID list List size
a, {1,2,3} 3
a {4,5} 2
b, {1,4,5} 3
b, {2,3 2
[{1,2,3,4,5} 5
d; {1,3,4,5} 4
d, {2} 1
e {1,2} 2
& {34} 2
e {5} 1

Shell Fragments Computation

3) ..

#Compute the full /oca/data cube
(except the local apex cuboid) for each
fragment

= Vs. Cube shell??

#Record an inverted index for each cell in
the cuboids

(a,b,c) & a, b, ¢, ab, ac, bc, abc
(d,e) > d, e, de

... Shell Fragment
Computation (3) ...

ab cuboid
Cell | Intersection | TID List | ListSize
@by | {1230 {145 | O 1
@b) | 123023 | 23 2
@b) | 45rn {145 | {45 2
(@b | {450 {23} o 0

Inverted indexes are built as the cell
aggregates are computed

% Apriori property can be used to prune some
computation

... Shell Fragment
Computation (3)

#Using an ID_measure array instead of
the original database table

TID ‘ Item_count ‘ sum

70
10
20
40

uoA W N R
N W

30

Query Cube Fragments — Point
Query

#Point query: all dimensions are
instantiated with either a value or *
@Examples:
= (ay,by,¢y,d5€4,77)
= (a4,by,cq,d5,%,7?)
= (*,b,y,cq,d,,*,2?)

Answering Point Queries

(all bZI Cys dZI el) (*l bZI Cys dZI *)
! ! ”?
{23} n {2}
|
{2}

Query Cube Fragments —
Subcube Query

#Subcube query: at least one of the
dimensions is /nquired (i.e. a group-by
attribute)

#Example:

2-D data cube ona and e

all
o
AN
a o/
~N

O
ae

(@ bycy,*€7??7) —
oe

Answering Subcube Queries

(a, by ¢y, %, €, 77)

Vo |
a;:{1,2,3} n {2,3} n e;:{1,2}
aZ: {4/5} e2: {314}

e;: {5}

Base cuboid of ae l
(are) (a,8) (ayes) (ax€1) (ay€) (aye;)
Full cube computation l

Data cube on a and e

Summary

#Closed cube
#Full cube computation
= Multiway Array Aggregation
#Iceberg cube
= BUC
#Cube shell fragments
= Computation and query

Further Issues in OLAP

@ Detect exceptions
#Data visualization and exploration

#Complex aggregations

= E.g. total sales of highest-priced items
group by month and region

#Gradient analysis

= Changes between probe cells and its
ancestors, descendents, and siblings

