

Density-based Clusters

◆A cluster is a dense region of objects surrounded by a region of low density

©Tan, Steinbach, Kumar Introduction to Data Mining

Conceptual Clusters

A cluster is a set of objects that share some property

> ©Tan, Steinbach, Kumar Introduction to Data Mining

Types of Clustering

- Partitional vs. Hierarchical
- Exclusive vs. Overlapping vs. Fuzzy
- Complete vs. Partial

Similarity Measure

TID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Cinalo	70V	No

♦Is #1 more similar to #2 or #3?

Interval-Scaled Attributes

Continuous-valued data measured with a linear scale (vs. exponential or logarithmic scale)

Distance Measures

♦X=(
$$x_1, x_2, ..., x_n$$
) and **Y**=($y_1, y_2, ..., y_n$)
■ E.g. (1,2) and (3,5)

Euclidean Distance:

Manhattan Distance:

$$dist(\mathbf{X}, \mathbf{Y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \qquad dist(\mathbf{X}, \mathbf{Y}) = \sum_{i=1}^{n} |x_i - y_i|$$

Minkowski Distance

$$dist(\mathbf{X}, \mathbf{Y}) = \sqrt[p]{\sum_{i=1}^{n} |x_i - y_i|^p}$$

- ◆p=1 (Manhattan Distance)
- a.k.a. L₁ norm or L₁ distance
- ♦p=2 (Euclidean Distance)
 - a.k.a. L₂ norm or L₂ distance

Requirements of Distance Functions

- dist(**X**,**Y**)≥0
- ◆dist(X,X)=0
- ◆dist(X,Y)=dist(Y,X)
- $\text{dist}(\mathbf{X},\mathbf{Y}) \leq \text{dist}(\mathbf{X},\mathbf{Z}) + \text{dist}(\mathbf{Z},\mathbf{Y})$
 - Triangular Inequality

Problem of Units

- ♦(10m,2km) and (5m,2.1km)?
- ♦(10m,200lb) and (5m, 210lb)?

Standardize Interval-Scaled Attributes

♦ Given attribute A with values a₁, a₂, ..., a_n

Mean: $\bar{a} = \frac{1}{n} \sum_{n=1}^{n} a_n$

Mean absolute deviation: $s = \frac{1}{2} \sum_{i=1}^{n} |a_i - \overline{a}|$

Standardized measurement (z-score): $z_i = \frac{a_i - \overline{a_i}}{c}$

Binary Attributes

- Symmetric
 - E.g. gender
- Asymmetric
 - E.g. HIV test result

Contingency Table for Binary Attributes

- Example
 - **X**=(1,1,0,1,0,0,0), Y=(0,1,0,1,0,1,0)

Distance Measure for Symmetric Binary Attributes

Similarity:
$$sim(\mathbf{X}, \mathbf{Y}) = \frac{q+t}{q+r+s+t}$$

Dissimilarity:
$$dsim(\mathbf{X}, \mathbf{Y}) = \frac{r+s}{q+r+s+t}$$

Distance: ?

Distance Measure for Asymmetric Binary Attributes

Similarity (Jaccard Coefficient):
$$sim(\mathbf{X}, \mathbf{Y}) = \frac{q}{q+r+s}$$

Dissimilarity:
$$dsim(\mathbf{X}, \mathbf{Y}) = \frac{r+s}{q+r+s}$$

Distance: ??

Binary Attribute Example

TID	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
1	М	Υ	N	Р	N	N	N
2	F	Υ	N	Р	N	Р	N
3	М	Υ	Υ	N	N	N	N

\$\dist(1,2)?? dist(2,3)?? dist(3,1)??

Categorical Attributes

- Example
 - Marital status: single, married, divorced
- \oplus dist(X,Y)=(p-m)/p
 - m: number of attribute matches
 - p: total number of attributes
- Or, encode each state with a binary attribute

Ordinal Attributes

- Example
 - Grade: F, D, C, B, A
- Given an attribute with M possible values {1,2,...,M}, map value a to the range of [0.0,1.0]

$$z = \frac{a-1}{M-1}$$

Records with Mixed Types of Attributes ...

$$dist(\mathbf{X}, \mathbf{Y}) = \frac{\sum_{i=1}^{n} \delta_{i} \times dist(x_{i}, y_{i})}{\sum_{i=1}^{n} \delta_{i}}$$

- - \blacksquare 0 if \mathbf{x}_i or \mathbf{y}_i is missing, or \mathbf{a}_i is asymmetric binary and $\mathbf{x}_i = \mathbf{y}_i = \mathbf{0}$
 - 1 othewise

... Records with Mixed Types of Attributes

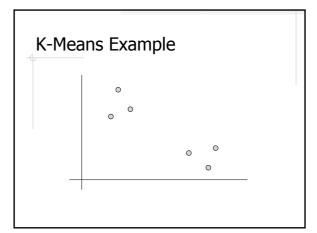
- \bullet dist(x_i, y_i)
 - Interval-based: |x_i-y_i|/(max(a_i)-min(a_i))
 - Binary or categorical: 0 if x_i=y_i; 1 otherwise
 - \blacksquare Ordinal: treat as interval-based using \boldsymbol{z}_{i}

Other Distance Measures

- Cosine distance
- Tanimoto distance
- **.**..
- Weighted distance

K-Means

- $\ \ \, \ \ \, \ \ \,$ Input: dataset D and number of clusters k
- Algorithm
 - 1. Randomly choose k objects as cluster centers
 - 2. Assign each object to the closest cluster center
 - 3. Update each cluster center
 - 4. Repeat 2 until there is no reassignment occurs



Key Issues in K-Means

- Distance measure?
 - Euclidean, Manhattan, Cosine ...
- Cluster center?
 - Mean, median

Need for Objective Function (a) (b) The best clustering is the one that minimize

The best clustering is the one that minimize the "errors" defined by an objective function

Notations

D	Dataset	
k	The number of clusters	
Ci	ith cluster	
Ci	The center of the ith cluster	
х	An object	

Objective Functions

Sum of the Squared Error (SSE):

$$SSE = \sum_{i=1}^{k} \sum_{x \in C_i} dist_{L_2}(x, c_i)^2$$

Sum of the Absolute Error (SAE):

$$SAE = \sum_{i=1}^{k} \sum_{x \in C_i} dist_{L_i}(x, c_i)$$

Minimize an Object Function

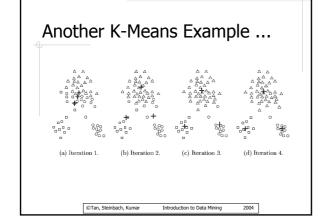
Example:

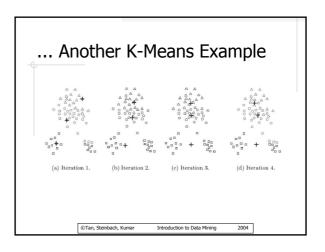
- One dimensional data
- One cluster
- SSE

$$SSE(c) = \sum_{x \in C} (c - x)^2$$
 $\frac{\partial}{\partial c} SSE(c) = 0$

Distances, Centroids, and Objective Functions

Distance Function	Centroid	Objective Function
Manhattan (L ₁)	Median	Sum of L ₁ distance
Squared Euclidean (L ₂)	Mean	Sum of squared L ₂ distance
Cosine	Mean	Sum of cosine distance
Bregman Divergence	Mean	Sum of Bregman divergence





Dealing with the Problem of Initial Centroid Selection

- Perform several runs of K-Means and select the clustering with the smallest SSE
 - Not as effective as you would think, especially with large k (*why??*)
- Use a hierarchical clustering algorithm on a sample to get K initial clusters
- Select centroid one by one, and each one is the farthest away from previously selected ones

Postprocessing

Escape local SSE minima by performing alternate clustering splitting and merging

Postprocessing – Splitting

- Splitting the cluster with the largest SSE on the attribute with the largest variance
- Introduce another centroid
 - The point that is farthest from current centroids
 - Randomly chosen

Postprocessing – Merging

- Disperse a cluster and reassign its objects
- Merge two clusters that are closed to each other

Bisecting K-Means

- 1. Initial a list of clusters with one cluster containing all the objects
- 2. Choose one cluster from the list
- 3. Split the cluster into two using basic K-Means, and add them back to the list
- 4. Repeat Step 2 until ${\it k}$ clusters are reached
- 5. Perform one more basic K-Means using the centroids of the ${\it k}$ clusters as initial centriods

About Bisecting K-Means

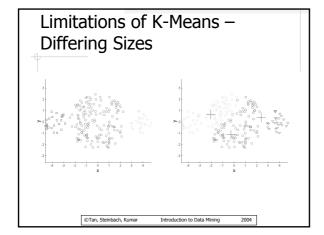
- Step 2
 - Choose the largest cluster
 - Choose the cluster with the largest SSE
- Step 3
 - Perform basic K-Means several times and choose the clustering with the smallest SSE
- Less susceptible to initialization problems
 - Why??

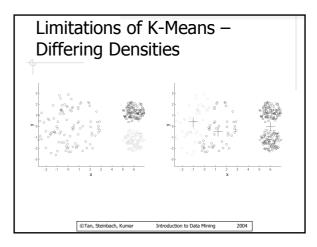
Handling Empty Clusters

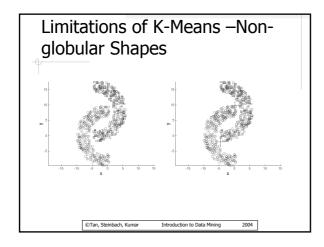
- Choose a replacement centroid
 - The point that's farthest away from any current centroid
 - A point from the cluster with the highest SSF

Limitations of K-Means

- Problem with clusters of different
 - Sizes
 - Densities
 - Non-globular shapes
- Problem with outliers
- Requires the notion of centroid







K-Medoids

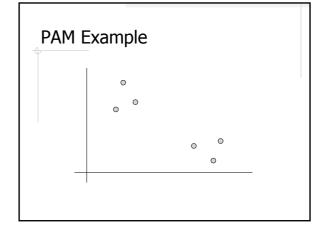
- Instead of using mean/centroid, use medoid, i.e. representative object
- Objective function: sum of the distances of the objects to their medoid
- Differs from K-Means in how the medoids are updated

PAM (Partition Around Medoids)

- 1. Randomly choose ${\tt k}$ objects as initial medoids
- 2. For each non-medoid object \mathbf{x}

For each medoid c,

- calculate the reduction of the total distance if c_{i} is replaced by $\ensuremath{\mathrm{x}}$
- 3. Replace the c_i with x that results in maximum total distance reduction
- 4. Repeat Step 2 until the total distance cannot be reduced
- 5. Assign each object to its closest mediod



K-Means vs. K-Medoids

- Requires the notion
 Works for all of mean/centroid
- More susceptible to
- ♦ O(kn) per iteration ♦?? per iteration
- distance measures
- Less susceptible to outliers

Hierarchical Clustering

- Agglomerative
 - Start with each object as a cluster
 - Recursively pick two clusters to merge
- Divisive
 - Start with all objects as a single cluster
 - Recursively pick one cluster to split

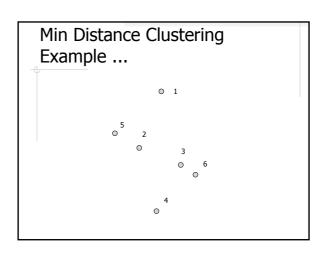
Agglomerative Hierarchical Clustering

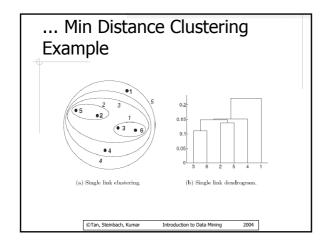
- 1. Compute a distance matrix
- 2. Merge the two *closest* clusters
- 3. Update the distance matrix
- 4. Repeat Step 2 until only one cluster remains

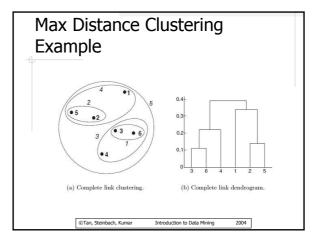
Distance Between Clusters

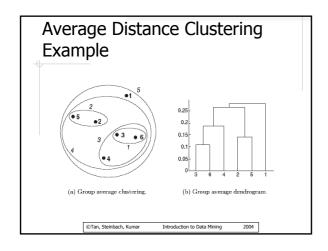
- Min distance
 - Distance between two closest objects
 - Min < threshold: Single-link Clustering
- Max distance
 - Distance between two farthest objects
 - Max < threshold: Complete-link Clustering
- Average distance
 - Average of all pairs of objects from the two

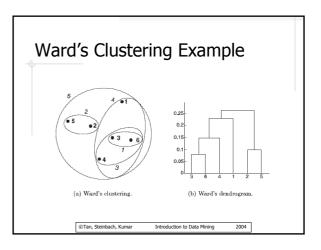
Centroid-based Distance Mean distance Increased SSE (Ward's Method)











About Hierarchical Clustering

- Produces a hierarchy of clusters
- Lack of a global objective function
- Merging decisions are final
- Expensive
- Often used with other clustering algorithms

BIRCH

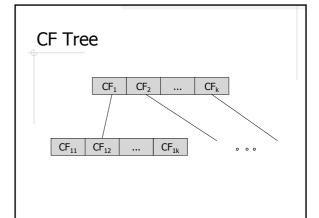
Balanced Iterative Reducing and Clustering using Hierarchies

Clustering Feature (CF)

◆CF=<N, LS, SS>

N: number of objects

LS (Linear Sum): $\mathbf{LS} = \sum_{i=1}^{N} \mathbf{x}_{i}$ SS (Square Sum): $SS = \sum_{i=1}^{N} \mathbf{x}_{i}^{2} = \sum_{i=1}^{N} \mathbf{x}_{i} \bullet \mathbf{x}_{i}$



CF Tree Construction – Input

- Dataset
- Threshold Condition
 - Diameter D of a cluster < d

Centroid:

$$\mathbf{x}_0 = \frac{\sum_{i=1}^{N} \mathbf{x}_i}{N} \qquad R = \sqrt{\frac{\sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{x}_0)^2}{n}} \qquad D = \sqrt{\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (\mathbf{x}_i - \mathbf{x}_j)^2}{N(N-1)}}$$

CF Tree Construction – Insert

- ◆ Insert an object into its closest cluster in a leaf node
 - The object is inserted if the resulting cluster does not violate the threshold condition
 - Otherwise the object is inserted as a cluster of by
- ♦ When a node is full, split it and rebalance the tree (similar to B+ Tree Insertion)

CF Tree Howto's

- Find closest cluster
 - Object-to-cluster distance
- Insert object into a cluster
 - Update CF
 - Check threshold condition
 - Calculate diameter
- Split node and rebalance tree
 - Merge clusters that are close to one anther
 - Cluster-to-cluster distance; calculate CF of the merged cluster

Diameter Calculation

◆Calculate diameter using CF

$$D = \sqrt{\frac{2N \times SS - 2\mathbf{LS}^2}{N(N-1)}}$$

Diameter Calculation Example

- ♠A cluster with three 1-D objects
 - $x_1 = (x_1)$
 - $x_2 = (x_2)$
 - $x_3 = (x_3)$

Cluster-to-Cluster Distances

- Cluster-to-cluster distances that can be calculated using CF
 - D₀: centroid Euclidean distance
 - D₁: centroid Manhattan distance
 - D₂: average inter-cluster distance
 - D₃: average intra-cluster distance
 - D₄: variance increase distance

About BIRCH

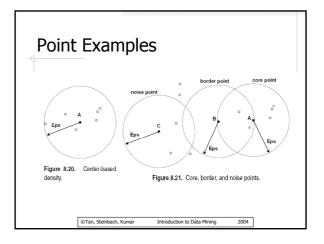
- Single scan of data
 - CF tree is kept in memory
 - Size of the CF tree can be adjusted using the threshold value
- Cluster the leaf node clusters
 - More natural clusters
 - Sparse clusters detected as outliers
- Require the notion of centroid

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- A density-based clustering algorithm

Classification of Points

- •Given a radius ϵ and the minimum number of points MinPts within a radius of ϵ (ϵ -neighborhood)
 - Core point
 - \bullet Has more points in its $\epsilon\text{-neighborhood}$ than MinPts
 - Border points
 - Within the ε -neighborhood of a core point
 - Noise points



The DBSCAN Algorithm

- ♦Label all points as core, border, or noise
- Remove all noise points
- $\ \ \, \ \ \, \ \ \, \ \ \,$ Put an edge between all core points that are with ϵ of each other
- Make each connected group of core points a cluster
- Assign border points to one of the clusters of their associated core points

DBSCAN Example

Select DBSCAN Parameters

- ♠k-dist: distance to the kth nearest neighbor
- ♠ k=4 is usually reasonable for most 2-D datasets

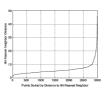
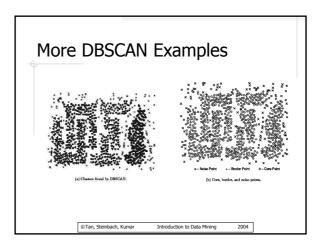


Figure 8.23. K-dist plot for sample data

©Tan, Steinbach, Kumar Introduction to Data Mining



About DBSCAN

- Handle clusters with arbitrary shapes and sizes
- Limitations
 - Clusters with varying densities
 - High dimensional data
- Could be expensive because of nearest neighbor computer
 - Use a spatial index structure like R tree or k-d tree

Other Clustering Algorithms

- More efficient
 - Speed
 - Scalability
- High dimensional data
- Constraint-based

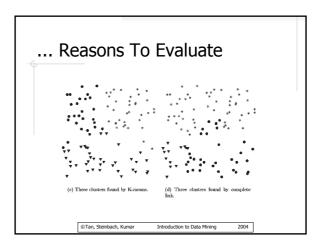
Cluster Evaluation

- ♦a.k.a. Cluster Validation
- Unsupervised
 - Using no external information other than the data itself
- Supervised
 - With external information such as given class labels

Reasons Not To Evaluate

- Clustering is often used as part of exploratory data analysis
- Clustering is often used as part of other algorithms
- Clustering algorithms, in some sense, define their own types of clusters

Reasons To Evaluate ... (a) Original points. (b) Three clusters found by DBSCIAN.



Quality (Validity) of Clusters

- Cohesion
 - Compactness of a cluster
- Separation

Validity of Graph-based Clusters

$$cohesion(C_i) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_i}} dist(\mathbf{x}, \mathbf{y})$$

$$separation(C_i, C_j) = \sum_{\substack{\mathbf{x} \in C_i \\ \mathbf{y} \in C_j}} dist(\mathbf{x}, \mathbf{y})$$

Validity of Prototype-based Clusters

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} dist(\mathbf{x}, \mathbf{c_i})$$

 $separation(C_i, C_j) = dist(\mathbf{c}_i, \mathbf{c}_j)$

 $separation(C_i) = dist(\mathbf{c}_i, \mathbf{c})$

Validity of A Clustering

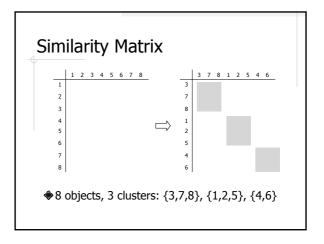
$$validity(C) = \sum_{i=1}^{k} w_i \times validity(C_i)$$

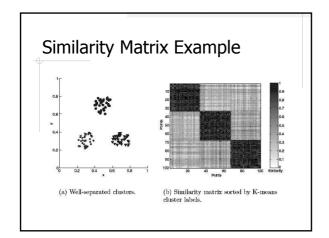
Cluster Weights Validity Measures Weights $\frac{\sum_{\mathbf{x} \in C_i} dist(\mathbf{x}, \mathbf{y})}{\sum_{\mathbf{y} \in C_i} dist(\mathbf{x}, \mathbf{c_i})} \qquad 1/|C_i|$ $\frac{\sum_{\mathbf{x} \in C_i} dist(\mathbf{x}, \mathbf{c_i})}{dist(\mathbf{c_i}, \mathbf{c})} \qquad 1$

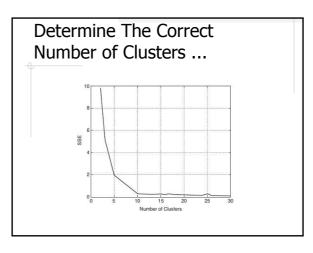
Silhouette Coefficient

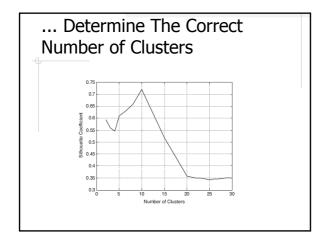
- ◆For the ith object in a cluster
 - $\ \ \, \mathbf{a}_i \ \ \,$ average distance to all other objects in the cluster
 - b_i: max of the average distance to the objects in a cluster that does not contain this object

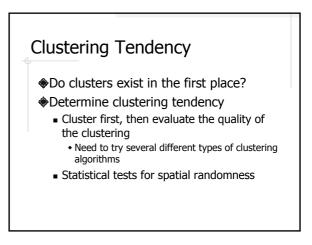
$$s_i = (b_i - a_i) / \max(a_i, b_i)$$











Hopkins Statistic

- $\ensuremath{\blacklozenge}$ Generate $\ensuremath{\mathtt{p}}$ random points in the data space
 - u₁: distance of a randomly generated point to its nearest neighbor in the original dataset
- $\ensuremath{\blacklozenge}$ Select $\ensuremath{\mathtt{p}}$ random points from the original dataset
 - $\,\bullet\,$ $\,\mathbf{w}_{i}\colon$ distance of a randomly selected point to it nearest neighbor in the original dataset
- ♦ Interpretation of Hopkins Statistic??

$$H = \frac{\sum_{i=1}^{p} w_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

Supervised Measures of Cluster Validity

- Classification-oriented measures
 - Evaluate the extent to which a cluster contains the objects of a single class
- Similarity-oriented measures
 - Evaluate the extent to which two objects of the same class (or cluster) belong to the same cluster (or class)

Classification-oriented Measures

- Entropy
- Purity
- Precision, recall, F-measure

Similarity-oriented Measures

... Similarity-oriented Measures

Rand Statistic: $R = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$

 $\mbox{Jaccard Coefficient:} \quad J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$

Summary

- Types of clusters
- Types of clustering
- Similarity measures
- Clustering algorithms
 - Partitional: K-Means, K-Mediods
 - Hierarchical: Agglomerative, BIRCH
 - Density-based: DBSCAN
- Clustering evaluation
 - Unsupervised and supervised