

#### A Classification Problem

Is a loan to a person who is 45 years old, divorced, renting an apartment, with two kids and annual income of 100K high risk or low risk?





| ( | Classification vs. Regression                                                                                                                              |     |     |     |       |           |   |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|-----------|---|--|
|   | <ul> <li>Classification predicts categorical<br/>attribute values</li> <li>Regression predicts <i>continuous</i><br/>numerical attribute values</li> </ul> |     |     |     |       |           |   |  |
|   | SID                                                                                                                                                        | HW1 | HW2 | HW3 | Final | Pass/Fail | _ |  |
|   | 1                                                                                                                                                          | 40  | 60  | 70  | 95    | Passed    |   |  |
|   | 2                                                                                                                                                          | 10  | 15  | 11  | 65    | Failed    |   |  |
|   | 3                                                                                                                                                          | 30  | 45  | 40  | 75    | Passed    |   |  |
|   | 4                                                                                                                                                          | 35  | 50  | 35  | ?     | ?         |   |  |

| TID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|-----|---------------|-------------------|------------------|-----------------------|
| 1   | Yes           | Single            | 125K             | No                    |
| 2   | No            | Married           | 100K             | No                    |
| 3   | No            | Single            | 70K              | No                    |
| 4   | Yes           | Married           | 120K             | No                    |
| 5   | No            | Divorced          | 95K              | Yes                   |
| 6   | No            | Married           | 60K              | No                    |
| 7   | Yes           | Divorced          | 220K             | No                    |
| 8   | No            | Single            | 85K              | Yes                   |
| 9   | No            | Married           | 75K              | No                    |
| 10  | No            | Single            | 90K              | Yes                   |









| Spli<br>◆A | Splitting Attribute Selection<br>After a split, ideally each subset would<br>"pure", i.e. contains only one class of |     |                 |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------|-----|-----------------|--|--|--|
| ſ          | ECOLOS<br>Gender                                                                                                     | Age | Preferred color |  |  |  |
| -          | female                                                                                                               | 20  | pink            |  |  |  |
|            | male                                                                                                                 | 20  | black           |  |  |  |
|            | female                                                                                                               | 15  | pink            |  |  |  |
|            | male                                                                                                                 | 15  | black           |  |  |  |

#### Attribute Selection Measures

Entropy (Information Gain)Gini indexGain Ratio

Entropy

$$Entropy(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

 $\label{eq:pi_i} \ensuremath{\overset{\circ}{\mathcal{P}}}_i \ensuremath{\text{is the fraction of records in $D$ that} \\ \ensuremath{\text{belongs to class $C_i$}} \ensuremath{\overset{\circ}{\mathcal{P}}}_i \ensurema$ 



#### Preferred color

- 2 black and 2 pink??
- 3 black and 1 pink??
- 4 black??











- Training error
  - Misclassification of training records
- Testing (Generalization) error
  - Misclassification of testing records









#### Tree Pruning – Postpruning

- Buttom-up pruning of a fully constructed tree
  - Replace a subtree with a leaf node if it reduces testing error
    - How do we know whether it reduces testing error or not??
  - Pruning based on Minimum Description Length (MDL)

#### **Estimate Testing Errors**

- Use a *pruning set* in addition to the training set
- Optimistic error estimation
  - The training set is a good representation of the overall data (optimistic!), so the training error is the testing error
- Pessimistic error estimation
  - Training error + penalty term for model complexity











#### About Decision Tree Classification ...

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets











 $P(\mathbf{x}_k | \mathbf{C}_i)$  is the fraction of number of records in  $\mathbf{C}_i$  with value  $\mathbf{x}_k$  for attribute  $\mathbf{A}_k$ 







P(No|HO=No,MS=M,AI=120K) vs. P(Yes|HO=No,MS=M,AI=120K)



## Avoid Zero $P(x_k|C_i)$

- A zero  $P(\mathbf{x}_k | C_i)$  would make the whole  $P(\mathbf{x} | C_i)$  zero
- To avoid this problem, add 1 to to each count, assuming the training set is sufficiently large that the effect of adding one is negligible
- Example
  - Low income:0
  - Medium income: 990
  - High income: 10

#### About Naive Bayesian Classification

- The most accurate classification if the conditional independence assumption holds
- In practice, some attributes may be correlated
  - E.g. education level and annual income

#### Bayesian Belief Network (BBN)

- A directed acyclic graph (dag) encoding the dependencies among a set of variables
- A conditional probability table (CPT) for each node given its immediate parent nodes



#### **BBN** Terminology

- If there is a directed arc from x to y
  - x is a parent of y
  - $\hfill\blacksquare$   $\hfill$   $\hfill$  hfill  $\hfill$  hfill hfill hfill hfill hfill \hfill hfill h
- If there is a directed path from x to y
  - x is an ancestor of Y
  - Y is a descendent of X

# Conditional Independence in BBN

A node in a Bayesian network is conditionally independent of its nondescendants if its parents are known











#### Bayesian Classification Examples – 3

$$\begin{split} P(HD = Yes \mid BP = High, D = Healthy, E = Yes) \\ &= \frac{P(BP = High \mid HD = Yes, D = Healthy, E = Yes)P(HD = Yes \mid D = Healthy, E = Yes)}{P(BP = High \mid HD = Yes)P(HD = Healthy, E = Yes)} \\ &= \frac{P(BP = High \mid HD = Yes)P(HD = Yes \mid D = Healthy, E = Yes)}{\sum_{i=1}^{n} P(BP = High \mid HD = a_i)P(HD = a_i \mid D = Healthy, E = Yes)} \\ &= 0.59 \end{split}$$

#### Other Classification Methods

- Rule-based
- Artificial Neural Network (ANN)
- Support Vector Machine (SVM)
- Association rule analysis
- Nearest neighbor
- Genetic algorithms
- $\ensuremath{\circledast}$  Rough Set and Fuzzy Set theory
- **.**

#### **Ensemble Methods**

- Use a number of *base* classifiers, and make a predication by combining the predications of all the classifiers
- Example
  - Binary classification
  - 25 classifiers, each with error rate 35%
  - Predict by majority vote
  - Error rate of the ensemble classifier??

## Construct an Ensemble Classifier

- Train k classifiers with one dataset
  - Use the same dataset for each classifier??
  - Divide the dataset into k subsets??
  - Bagging and Boosting

#### Bagging (Bootstrap Aggregation)

- ♦ A *bootstrap* sampling of |D|
  - Uniform sampling with replacement (vs. without replacement)
  - Allow duplicates in the sample
  - |D| samples
  - Roughly contains 63.2% of the original records. Why??
- Bagging
  - Use a bootstrap sample as the training set for each classifier

#### **Bagging Example**

- Record (x,y)
  - x: attribute
  - y: class label
- Ensemble classifier: 10 classifiers, majority vote

```
©Tan, Steinbach, Kumar Introduction to Data Mining 2004
```

| Baggin | g Exar | nple | – Dataset | t |
|--------|--------|------|-----------|---|
|        | x      | Y    | _         |   |
|        | 0.1    | 1    |           |   |
|        | 0.2    | 1    |           |   |
|        | 0.3    | 1    |           |   |
|        | 0.4    | -1   |           |   |
|        | 0.5    | -1   |           |   |
|        | 0.6    | -1   |           |   |
|        | 0.7    | -1   |           |   |
|        | 0.8    | 1    |           |   |
|        | 0.9    | 1    |           |   |
|        | 1.0    | 1    |           |   |





## About Bagging

- Reduces the errors associated with random fluctuations in the training data for *unstable classifiers*, e.g. decision trees, rule-based classifiers, ANN
- May degrade the performance of stable classifiers, e.g. Bayesian network, SVM, k-NN

#### Intuition for Boosting

- Sample with weights
  - hard-to-classify records should be chosen more often
- Combine the prediction of the base classifiers with weights
  - Classifiers with lower error rates get more voting power

# Boosting – Training For k classifiers, do k rounds of Assign a weight to each record Sample with replacement according to the weights Train a classifier M<sub>i</sub> Calculate error(M<sub>i</sub>) Update the weights of the records Increase the weights of the orrectly classified records Decrease the weights of the correctly classified records



#### **Boosting Implementation**

- How the record weights are updated
- How the classifier weights are calculated



#### Example of Accuracy Measures

#### Example

- Two classes C<sub>1</sub> and C<sub>2</sub>
- 100 testing records with 50  $\rm C_1$  records and 50  $\rm C_2$  records
- 20 C<sub>1</sub> records misclassified as C<sub>2</sub>, and 10 C<sub>2</sub> records misclassified as C<sub>1</sub>

#### Accuracy measures

- Accuracy and error rates??
- Confusion matrix??
- Precision and Recall??

# Evaluate the Accuracy of a Classifier

- The Holdout Method
  - Given a set of records with known class labels, use half of them for training and the other half for testing (or 2/3 for training and 1/3 for testing)

## Problems of the Holdout Method

- More records for training means less for testing, and vice versa
- Distribution of the data in the training/testing set may be different from the original dataset
- Some classifiers are sensitive to random fluctuations in the training data

#### Random Subsampling

- $\ensuremath{\textcircled{\sc Repeat}}$  the holdout method  $\ensuremath{\Bbbk}$  times
- $Take the average accuracy over the <math display="inline">{\bf k}$  iterations
- Random subsampling methods
  - Cross-validation
  - Bootstrap

#### K-fold Cross-validation

- Divide the original dataset into k nonoverlapping subsets
- Each iteration uses (k-1) subsets for training, and the remaining subset for testing
- Total errors are the sum of the errors in each iteration

## Bootstrap (.632 Bootstrap)

- Each iteration uses a bootstrap sample to train the classifier, and the remaining records for testing
- Calculate the overall accuracy:

 $\frac{1}{k}\sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test\_set} + 0.368 \times Acc(M_i)_{all\_records})$ 

#### Predicating Continuous Values

- Regression methods
  - Linear regression
  - Non-linear regression
- Other methods
  - Some classification methods can be adapted to predict continuous values



Linear Regression Using Least-Squares Method  $w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{|D|} (x_{i} - \overline{x})^{2}}$  $w_{0} = \overline{y} - w_{1}\overline{x}$ 



