CS320 Web and Internet Programming
Introduction to Web Application Security

Chengyu Sun
California State University, Los Angeles

Users of Web Applications

#Multiple users
#®Multiple types of users

Web Application Security

Client Server
request page x
c
o
= who are you?
Qo
=}
c
Q
S username/password =
2 Sk
2 C
. RS
you're not authorized to access page x 5 g
E=R1
23
<<
<

Connection Security

Authentication

#®HTTP Basic
#HTTP Digest
#Form Based
@HTTPS Client

Chapter SRV.12, Java Serviet Specification Version 2.4

HTTP Basic Authentication

#HTTP 1.0, Section 11.1-
http://www.w3.org/Protocols/HTTP/1.0/draft-

ietf-http-spec.html

request for a restricted page

prompt for username/password

Client Server

resend request
authorization header field = username & password

Problem??

Cryptographic Hash Function...

String of arbitrary length > n bits digest

Properties
= Given a hash value, it's virtually impossible to find a
message that hashes to this value
= Given a message, it's virtually impossible to find another
message that hashes to the same value
= It's virtually impossible to find two messages that hash to
the same value
A KA.
= One-way hashing, message digest, digital fingerprint

...Cryptographic Hash Function

#Common usage

= Store passwords, software checksum ...
#Popular algorithms

= MD5 (broken, sort of)

= SHA-1 (expected to be broken soon)

= SHA-256 and SHA-512 (recommended)

HTTP Digest Authentication

RFC 2617 (Part of HTTP 1.1) -
http://www.ietf.org/rfc/rfc2617.txt

request for a restricted page

prompt for username/password + nonce

resend request + message digest
MD5(username + password + nonce + request counter + ...)

Why nonce??

Form Based Authentication

#Both Basicand Digest authentications
are supported by most of the HTTP
servers

@ Form based authentication is specific to
J2EE application servers

= Username/password are passed as clear
text

= Login page instead of login prompt

Form Authentication using
Tomcat

#$TOMCAT/ conf/ t ontat - users. xm
= Users and roles

#®$APPLI CATI ON VEB- | NF/ web. xmi
= Authentication type (FORM)
= Login and login failure page
= URLs to be protected

Example — Directory Layout

4{ /admin H home.jsp ‘
4{ /restricted H secret.jsp ‘

index.htm

login.jsp
logout.jsp

404.htm

error.htm

Example — Users and Roles

<?xml version="'1.0" encoding="utf-8'?>
<tomcat-users>
<role rolename="tomcat"/>
<role rolename="cysun"/>
<role rolename="manager"/>
<role rolename="guest"/>
<user username="tomcat" password="tomcat" roles="tomcat"/>
<user username="cysun" password="abcd" roles="cysun,manager"/>
<user username="test" password="test" roles="tomcat"/>
<user username="guest" password="guest" roles="guest"/>
</tomcat-users>

Example — web.xml ...

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/error.htm</form-error-page>
</form-login-config>
</login-config>

... Example — web.xml

<security-constraint>
<web-resource-collection>
<web-resource-name>Admin</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>cysun</role-name>
</auth-constraint>
</security-constraint>

Example — Login Page

<form action="j_security_check" method="post">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="login" value="Login">
</form>

Declarative Security

Supported by servlet container (container-
managed security)

4# Authentication and authorization specified in
meta data file rather than code

#Vs. Programmatic Security
+ Easier to use and maintain
+ Separate security code from normal code
- Container dependent
- Maybe less flexible

Encryption

#Symmetric key algorithms
= DES, IDEA, AES, ...
#Asymmetric key algorithms
= A.K.A. Public key algorithms
= Diffie-Hellman Key Exchange, RSA, ...

Public Key Encryption

<private key, public key>
» Messages encrypted with one key can only be
decrypted by the other
= Given the public key, it's virtually impossible to
calculate the private key
Applications
= Secure email
= Digital signature

RSA — Encryption and

RSA — Key Generation Decryption
4p and g are large prime numbers and p#zq
#n=p*q c= me modn
®q@(n)=(p-1)*(g-1)
Select e where 1<e<q@(n), and e and @ n)
are coprime m= Cd mod n
4 Compute d where d*e=1(nod ¢(n))
4 Public key: d and n
Private key: e and n
RSA Example SSL
#p = 17 and q = 31 #Secure Socket Layer (SSL)
#n = 527 = Server authentication
#@(n) = 480 = Client authentication
e = 7 = Connection encryption
&d = 343 #Transport Layer Security (TLS)

#m= 2, c = 128

= TLS 1.0 is based on SSL 3.0
= IETF standard (RFC 2246)

SSL Handshake

4 Without client authentication

client information

server information +
certificate (include server's public key)

Client negotiate for a master secret Server

Requests encrypted with session key

Responses encrypted with session key

Certificate Authority (CA)

#CA — an entity that issues certificates
= VeriSign, Thawte, ...

#®Root certificates
= Built into browsers
= Import into browsers

HTTPS

@HTTP over SSL

#Configure SSL in Tomcat 5.5 -
http://tomcat.apache.org/tomcat-5.5-
doc/ssl-howto.html

