
1

CS520 Web Programming
Object-Relational Mapping with Hibernate

Chengyu Sun

California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects

So we use object-oriented languages to
write applications

We want to store some of the
application objects (a.k.a. persistent
objects), e.g. accounts, customers,
employees

So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
� Best performance

� Most reliable

� Widest support

Bridge between OO applications and
relational databases
� CLI and embedded SQL

� Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)

Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);

Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL

SQL statements are embedded in host
language

String name;
#sql {select name into :name from items where id = 1};

System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;

Employee supervisor;

}

2

Employee – Database Table

create table employees (

id integer primary key,
name varchar(255),

supervisor integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;
String name;

Employee supervisor;

public Employee(Integer id)
{

// access database to get name and supervisor
… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {

…
PreparedStatment p;

p = connection.prepareStatment(
“select * from employees where id = ?”

);

…
}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {

…
ResultSet rs = p.executeQuery();

if(rs.next())
{

name = rs.getString(“name”);

…
}

}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {

…
ResultSet rs = p.executeQuery();

if(rs.next())
{

…

supervisor = ??
}

}

The ORM Approach

customer

employee

account

Application

Persistent Data Store

ORM tool

Oracle, MySQL, SQL Server …

Flat files, XML …

3

Advantages of ORM

Make RDBMS look like ODBMS

Data are accessed as objects, not rows and
columns

Simplify many common operations. E.g.
System.out.println(e.supervisor.name)

Improve portability
� Use an object-oriented query language (OQL)

� Separate DB specific SQL statements from
application code

Caching

Common ORM Tools

Java Data Object (JDO)

� One of the Java specifications

� Flexible persistence options: RDBMS, OODBMS, files etc.

Hibernate

� Most popular Java ORM tool right now

� Persistence by RDBMS only

Others

� http://en.wikipedia.org/wiki/Object-relational_mapping

� http://www.theserverside.net/news/thread.tss?thread_id=29
914

Hibernate Application
Architecture

hibernate

Setup Hibernate

Download hibernate-3.0.5.zip from
http://www.hibernate.org/6.html

Add the following jar files to
CLASSPATH

� hibernate-3.0\hibernate3.jar

� All the jar files under hibernate-3.0\lib

� The JDBC driver of your DBMS

A Simple Hibernate Application

Java classes
� Employee.java

O/R Mapping files
� Employee.hbm.xml

Hibernate configuration file
� hibernate.cfg.xml

(Optional) Logging configuration files
� Log4j.properties

Code to access the persistent objects
� EmployeeTest1.java

Java Classes

Plain Java classes (POJOs); however, it is
recommended that

� Each persistent class have an identity field

� Each persistent field have a pair of getter and

setter, which don’t have to be public

The identity field is used to uniquely identify
an object

The persistent fields are accessed as bean
properties

4

O/R Mapping Files

Describe how class fields are mapped to table
columns

Three important types of elements in a a
mapping file
� <id>

� <property> - when the field is of simple type

� Association – when the field is of a class type
� <one-to-one>

� <many-to-one>

� <many-to-many>

Hibernate Configuration Files

Tell hibernate about the DBMS and
other configuration parameters

Either hibernate.properties or
hibernate.cfg.xml or both

� Sample files under hibernate-3.0/etc

Logging

Use print statements to assist debugging

� Why do we want to do that when we have GUI
debugger??

public void foo()
{

System.out.println(“loop started”);
// some code that might get into infinite loop

…
System.out.println(“loop finished”);

}

Requirements of Good
Logging Tools

Minimize performance penalty

Support different log output

� Console, file, database, …

Support different message levels

� Fatal, error, warn, info, debug, trace

Easy configuration

Log4j and Commons-logging

Log4j

� A logging tool for Java

� http://logging.apache.org/log4j/docs/

Commons-logging

� A wrapper around different logging

implementations to provide a consistent API

� http://jakarta.apache.org/commons/logging/

Log4j Configuration File

log4j.properties specifies

� Output type

� Output format

� Class

� Message level

Appender

Logger

5

Logging Example

hex.test.LogTest

Access Persistent Objects

Session

Query

Transaction

� A transaction is required for updates

Hibernate Query Language
(HQL)

A query language that looks like SQL,
but for accessing objects

Automatically translated to DB-specific
SQL statements
select e from Employee e
where e.id = :id
� From all the Employee objects, find the
one whose id matches the given value

CRUD Example

EmployeeTest2.java

� “from Employee”

� load() or get()?

� How does hibernate tell whether an object
is new??

� Caching

load() vs. get()

load() raises an exception if an object
cannot be found; get() would return

null

load() may return a proxy but get()
never does

Caching

Object cache and query cache

Cache scopes

� Session

� Process

� Cluster

6

Transaction Isolation Levels

Read Uncommitted

Read Committed

Read Repeatable

Serializable

- Conflicting writes

- Dirty reads

- Non-repeatable reads

- Phantom reads

Caching in Hibernate

First-level cache

� Session scope

� Always on (and cannot be turned off)

Second-level cache

� Pluggable Cache Providers

� Process cache

� EHCache and OSCache

� Cluster cache

� SwarmCache and JBossCache

Hibernate Cache Concurrency
Policies

Read-only

Non-strict Read-Write

Read-Write

Transactional

Read Uncommitted

Read Committed

Read Repeatable

Currency Support of Hibernate
Cache Providers

XXJBossCache

XXSwarmCache

XXXOSCache

XXXEHCache

TransactionalRead-WriteNon-strict
Read-Write

Read-only

hbm2ddl

Generate DDL statements from Java
classes and mapping files

db/

� hex.ddl – generated automatically by

hbm2ddl

� hex.sql – based on hex.ddl but

maintained manually

More About Mapping

Basic mapping

� <id>

� <property>

� Association

� many-to-one

� one-to-many

� one-to-one

� many-to-many

Collections

Subclasses

Components

Other

� Bidirectional
association

� Multi-way

relationship

7

Collection of Simple Types

public class Customer {

Integer id;

String name;

String address;

Set<String> phones;

}

Map Set of Simple Types

<set name="phones" table="phones" lazy="true">

<key column="customer_id"/>
<element type="string" column="phone"/>

</set>

id

customers phones

customer_id phone

Map List of Simple Types

<list name="phones" table="phones" lazy="true">

<key column="customer_id"/>
<index column=“phone_order"/>

<element type="string" column="phone"/>
</list>

id

customers phones

customer_id phone phone_order

Collection of Object Types

public class Account {

Integer id;

BigDecimal balance;

Date createdOn;

List<Customer> owners;

}

Map List of Object Types

<list name="owners" table="owners" lazy="true">

<key column="account_id"/>
<index column="owner_order"/>

<many-to-many class="Customer" column="customer_id"/>
</list>

id

customers owners

customer_id owner_order account_id id

accounts

Inheritance

When do we want to create subclasses??

public class CDAccount extends Account {

Integer term;

}

8

Map Subclass – Table Per
Concrete Class

created_onbalanceid

accounts

created_on termbalanceid

cd_accounts

Map Subclasses – Table Per
Subclass

created_onbalanceidaccounts

termidcd_accounts

<joined-subclass name="CDAccount" table="cd_accounts">
<key column="account_id"/>
<property name="term"/>

</joined-subclass>

Map Subclasses – Table Per
Hierarchy

<subclass name="CDAccount" discriminator-value="CD">
<property name="term"/>

</subclass>

<discriminator column="account_type" type="string"/>

created_on termbalanceid

accounts

Components

public class Address {

String street, city, state, zip;

}

public class User {

Integer id;

String username, password;

Address address;
}

Map Components

<component name="address" class="Address">
<property name="street"/>

<property name="city"/>
<property name="state"/>
<property name="zip"/>

</component>

users

…zipstatecitystreet…id

Components Inside Collection

<list name="history" table="bibtex_history" lazy="true">

<key column="bibtex_id" />
<index column=“bibtex_order" />

<composite-element class="BibtexEntry">

<property name="content" />
<many-to-one name="editor" class="User" />

<property name="lastModified" column="last_modified" />
</composite-element>

</list>

9

Somewhat Unusual Mappings

Bidirectional Association

� Accounts and Owners

� Item vs. Reviews, Ratings, and Tags

Multi-way relationship

� Tag

O/R Mapping vs. ER-Relational
Conversion

O/R Mapping ER-Relational Conversion

Class Entity Set

<property> Attribute

Association Relationship

Subclass

• table per concrete class
• table per class hierarchy

• table per subclass

Subclass

• OO method
• NULL method

• ER method

Things We’ll Talk Later (Or
Not)

Fine tune the schema

� not-null, unique etc.

Performance-related issues

� Lazy-loading

More about queries

� Criteria queries

� Native SQL queries

Conclusion?

What does hibernate give us??

More Hibernate Resource

Hibernate in Action by Christian Bauer and
Gavin King

Hibernate documentation at
http://www.hibernate.org

� Chapter 6-10

DTDs at
http://sun.calstatela.edu/~cysun/documentati
on/DTDs/

More Readings

Database Systems – The Complete Book by
Garcia-Molina, Ullman, and Widom

� Chapter 2: ER Model

� Chapter 3.2-3.3: ER to Relational Conversion

� Chapter 4.1-4.4: OO Concepts in Databases

� Chapter 9: OQL

� Chapter 8.7: Transactions

