
A Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces

Roger Weber Hans-J. Schek
Institute of Information Systems Institute of Information Systems

ETH Zentrum, 8092 Zurich ETH Zentrum, 8092 Zurich
weber@inf.ethz.ch schek@inf.ethz.ch

Stephen Blott
Bell Laboratories (Lucent Technologies)

700 Mountain Ave, Murray Hill
blott@research.bell-labs.com

Abstract

For similarity search in high-dimensional vec-
tor spaces (or ‘HDVSs’), researchers have pro-
posed a number of new methods (or adapta-
tions of existing methods) based, in the main,
on data-space partitioning. However, the
performance of these methods generally de-
grades as dimensionality increases. Although
this phenomenon-known as the ‘dimensional
curse’-is well known, little or no quantita-
tive a.nalysis of the phenomenon is available.
In this paper, we provide a detailed analy-
sis of partitioning and clustering techniques
for similarity search in HDVSs. We show for-
mally that these methods exhibit linear com-
plexity at high dimensionality, and that ex-
isting methods are outperformed on average
by a simple sequential scan if the number of
dimensions exceeds around 10. Consequently,
we come up with an alternative organization
based on approximations to make the unavoid-
able sequential scan as fast as possible. We de-
scribe a simple vector approximation scheme,
called VA-file, and report on an experimental
evaluation of this and of two tree-based index
methods (an R*-tree and an X-tree).

1 Introduction

An important paradigm of systems for multimedia, de-
cision support and data mining is the need for simi-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice zs
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permzssion from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

larity search, i.e. the need to find a small set of ob-
jects which are similar or close to a given query ob-
ject. Mostly, similarity is not measured on the objects
directly, but rather on abstractions of objects termed
features. In many cases, features are points in some
high-dimensional vector space (or ‘HDVS’), as such
they are termed feature vectors. The number of di-
mensions in such feature vectors varies between mod-
erate, from 4-8 in [19] or 45 in [32], and large, such as
315 in a recently-proposed color indexing method (131,
or over 900 in some astronomical indexes [la]. The
similarity of two objects is then assumed to be propor-
tional to the similarity of their feature vectors, which
is measured as the distance between feature vectors.
As such, similarity search is implemented as a nearest
neighbor search within the feature space.

The conventional approach to supporting similar-
ity searches in HDVSs is to use a multidimensional
index structure. Space-partitioning methods like grid-
file [27], K-D-B-tree [28] or quadtree [18] divide the
data space along predefined or predetermined lines
regardless of data clusters. Data-partitioning index
trees such as R-tree [21], Rf-tree [30], R*-tree [a],
X-tree [7], SR-tree [24], M-tree [lo], TV-tree [25] or
hB-tree [26] divide the data space according to the
distribution of data objects inserted or loaded into
the tree. Bottom-up methods, also called clustering
methods, aim at identifying clusters embedded in data
in order to reduce the search to clusters that poten-
tially contain the nearest neighbor of the query. Sev-
eral surveys provide background and analysis of these
methods [l, 3, 15, 291. Although these access methods
generally work well for low-dimensional spaces, their
performance is known to degrade as the number of
dimensions increases-a phenomenon which has been
termed the dimensional curse. This phenomenon has
been reported for the R*-tree [7], the X-tree [4] and
the SR-tree [24], among others.

In this paper, we study the performance of both
space- and data-partitioning methods at high dimen-
sionality from a theoretical and practical point of view.

194

Under the assumptions of uniformity and indepen-
dence, our contribution is:

l We establish lower bounds on the average per-
formance of existing partitioning and clustering
techniques. We demonstrate that these methods
are outperformed by a sequential scan whenever
the dimensionality is above 10.

l By establishing a general model for clustering and
partitioning, we formally show that there is no or-
ganization of HDVS based on clustering or parti-
tioning which does not degenerate to a sequential
scan if dimensionality exceeds a certain threshold.

l We present performance results which support our
analysis, and demonstrate that the performance
of a simple, approximation-based scheme called
vector clppro~cimation file (or ‘VA-file’) offers the
best, performance in practice whenever the num-
ber of dimensions is larger than around 6. The
VA-File is the only method which we have stud-
ied for which performance can even improve as
dimensionality increases.

The remainder of this paper is structured as fol-
lows. Section 2 introduces our notation, and discusses
some properties of HDVSs which make them problem-
atic in practice. Section 3 provides an analysis of near-
est neighbor similarity search problems at high dimen-
sionality, and demonstrates that clustering and parti-
tioning approaches degenerate to a scan through all
blocks as dimensionality increases. Section 4 sketches
the VA-File, and provides a performance evaluation of
four methods. Section 5 concludes.

Related Work

There is a considerable amount of existing work on
cost-model-based analysis in the area of HDVSs.
Early work in this area did not address the specific
difficulties of high dimensionality 111, 20, 311. More
recently, Berchtold et al. [5] have addressed the issue
of high dimensionality, and, in particular, the bound-
ary effects which impact the performance of high-
dimensional access methods. Our use of Minkowski
Sums, much of our notation, and the structure of
our analysis for rectangular minimum bounding re-
gions (or ‘MBRs’) follow their analysis. However,
Berchtold et al. use their cost model to predict the
performance of particular index methods, whereas we
use a similar analysis here to compare the performance
of broad classes of index methods with simpler scan-
based methods. Moreover, our analysis extends theirs
by considering not just rectangular MBRs, but also
spherical MBRs, and a general class of clustering and
partitioning methods.

There exists a considerable number of reduction
methods such as SVD, eigenvalue decomposition,
wavelets, or Karhunen-Lo&ve transformation which

can be used to decrease the effective dimensionality of
a data set [l]. Faloutsos and Kamel [17] have shown
that fractal dimensionality is a useful measure of the
inherent dimensionality of a data set. We will further
discuss this below.

The ‘indexability’ results of Hellerstein et al. [22]
are based on data sets that can be seen as regular
meshes of extension n in each dimension. For range
queries, these authors presented a minimum bound on
the ‘access overhead’ of B1-a, which tends toward B
as dimensionality d increases (B denotes the size of
a block). This ‘access overhead’ measures how many
more blocks actually contain points in the answer set,
compared to the optimal number of blocks necessary
to contain the answer set. Their result indicates that,
for any index method at high dimensionality, there al-
ways exists a worst, case in which IQ] different blocks
contain the I&I elements of the answer set (where I&I
is the size of the answer set for some range-query Q).
While Hellerstein et al. have established worst-case re-
sults, ours is an average-case analysis. Moreover, our
results indicate that, even in the average case, nearest-
neighbor searches ultimately access all data blocks as
dimensionality increases.

The VA-File is based on the idea of object, approx-
imation, as it has been used in many different, areas
of computer science. Examples are the Multi-Step ap-
proach of Brinkhoff et al. [8, 91, which approximates
object shapes by their minimum bounding box, the
signature-file for partial match queries in text, docu-
ments [14, 161, and multi-key hashing schemes [33].
Our approach of using geometrical approximation has
more in common with compressing and quantization
schemes where the objective is to reduce the amount
of data without losing too much information.

2 Basic Definitions and Simple Obser-
vat ions

This section describes the assumptions, and discusses
their relevance to practical similarity-search problems.
We also introduce our notation, and describe some ba-
sic and well-known observations concerning similarit,y
search problems in HDVSs. The goal of this section is
to illustrate why similarity search at, high dimension-
ality is more difficult than it is at low dimensionality.

2.1 Basic Assumptions And Notation

For simplicity, we focus here on the unit hyper-cube
and the widely-used Lz metric. However, the st,ructure
of our analysis might equally be repeated for other
data spaces (e.g. unit hyper sphere) and ot,her met-
rics (e.g. L1 or L,). Table 1 summarizes our notat,ion.

Assumption 1 (Data and Metric)
A d-dimensional data set D lies within the unit hyper-
cube R = [O,lld, and we use the L2 metric (Euclidean
metric) to determine distances.

195

d number of dimensions
N number of data points
R = [O, l]d data space
VCR data set
WI probability function
w expectation value
SP”(G 7-1 d-dim sphere around C with radius T
k number of NNs to return
nn(Q) NN to query point Q
nndzst(Q) NN-distance of query point Q
nn’p(Q) NN-sphere, spd(Q,nndiSt(Q))
E[nndzSt] expected NN-distance

Table 1: Notational summary

Assumption 2 (Uniformity and Independence)
Data and query points are uniformly distributed within
the data space, and dimensions are independent.

To eliminate correlations in data sets, we as-
sume that one of a number of reduction methods-
such as SVD, eigenvalue decomposition, wavelets or
Karhunen-Lokve-has been applied [I]. Faloutsos and
Kamel have shown that the so-called fractal dimen-
sionality can be a useful measure for predicting the
performance of data-partitioning access methods [17].
Therefore we conjecture that, for d-dimensional data
sets, the results obtained here under the uniformity
and independence assumptions generally apply also to
arbitrary higher-dimensional data sets of fractal di-
mension d. This conjecture appears reasonable, and
is supportled by the experimental results of Faloutsos
and Kamel for the effect of fractal dimensionality on
the performance of R-trees [17].

The nearest neighbor to a query point Q in a d-
dimensional space is defined as follows:

Definition 2.1 (NN, NN-distance, NN-sphere)
Let 2) be a set of d-dimensional points. Then the near-
est neighbor (NN) to the query point Q is the data
point rim(Q)) E V, which lies closest to Q in D:

7174Q) = {P E V (VP’ E D : IIP - &l/z 5 I/P’ - Qllz}

where Ilo--*ll~ d enotes Euclidean distance. The near-
est neighbor distance nndtst & d ‘ts nearest neighbojQ;ny;jle distance between

a71 2 , i.e nndiSt(Q) =

b(Q) - &IL and the NN-sphere nnsP(Q) is the
sphere with center Q apnd radius nndzst (Q). cl

Analogously, one can define the k-nearest neighbors
to a given query point Q. Then nndist,k(Q) is the
distance of the Ic-th nearest neighbor, and nnsP>k(Q)

is the corresponding NN-sphere.

2.2 Probability and Volume Computations

Let Q be a query point, and let spd(Q, r) be the hyper-
sphere around Q with radius r. Then, under the uni-

Q=[O. I Id

L-3

I/ Q

(4 (b)
Figure 1: (a) Data space is sparsely populated;
(b) Largest range query entirely within the data space.

formity and independence assumptions, for any point,
P, the probability that spd(Q, r) contains P is equal
to the volume of that part of sp”(Q, r) which lies in-
side the data space. This volume can be obtained by
integrating a piecewise defined function over 0.

As dimensionality increases, this integral becomes dif-
ficult to evaluate. Fortunately, good approximations
for such integrals can be obtained by the Monte-Carlo
method, i.e. generating random experiments (points)
within the space of the integral, summing the values
of the function for this set of points, and dividing the
sum by the total number of experiments.

2.3 The Difficulties of High Dimensionality

The following basic observations shed some light, on

the difficulties of dealing with high dimensionality.

Observation 1 (Number of partitions)
The most simple partitioning scheme splits the data
space in each dimension into two halves. With d di-
mensions, there are 2” partitions. With d 5 10 and N
on the order of 106, such a partitioning makes sense.
However, if d is larger, say d = 100, there are arourld
103’ partitions for only lo6 points-the overwhelming
majority of the partitions are empty.

Observation 2 (Data space is sparsely populated)
Consider a hyper-cube range query with length 1 in
all dimensions as depicted in Figure 1 (a). The proba-
bility that a point lies within that range query is given
by:

P”[s] = sd

Figure 2 plots this probability function for some 1 as a
function of dimensionality. It follows directly from the
formula above that even very large hyper-cube range
queries are not likely to contain a point. At d = 100, a

196

1.2

0.8

0.6

0.4

0.2

0

uniformly distributed

s=o.95 -
s=o.9 ------~-
s=O.8

0
iirnber: dime%ons 7:)

100

Figure 2: The probability function Pd[s].

range query with length 0.95 only selects 0.59% of the
data points. Notice that the hyper cube range can be
placed anywhere in R. From this we conclude that we
hardly can find data points in 0, and, hence, that the
data space is sparsely populated.

Observation 3 (Spherical range queries)
The largest spherical query that fits entirely within
the data space is the query spd(Q,0.5), where Q is
the centroid of the data space (see Figure l(b)). The
probability that an arbitrary point R lies within this
sphere is given by the spheres volume:l

J’[R E wd(Q, ;,I =
Wspd(Q, d,, = 47. (f,”

VoZ(cl) Iy$ + 1)

(2)

If d is even, then this probability simplifies to

P[R E spd(Q, ;,I =
l/G?. (f)”

(:I!
Table 2 shows this probability for various numbers
of dimensions. The relative volume of the sphere
shrinks markedly as dimensionality grows, and it in-
creasingly becomes improbable that any point will be
found within this sphere at all.

Observation 4 (Exponentially growing DB size)
Given equation (2), we can determine the size a data
set would have to have such that, on average, at least
one point falls into the sphere spd(Q, 0.5) (for even d):

($$
N(d) = @.(;)d (4)

Table 2 enumerates this function for various numbers
of dimensions. The number of points needed explodes
exponentially, even though the sphere spd(Q,0.5) is
the largest one contained wholly within the data space.
At d = 20, a database must contain more than 40 mil-
lion points in order to ensure, on average, that at least
one point lies within this sphere.

‘r(.)isdefinedby: r(a:+l)=z.r(z),r(l)=l,r(~)=J;;

d J=[R E wd(Q,0.5)1 N(d)
2 0.785 1.273
4 0.308 3.242
10 0.002 401.5
20 2.461. lo-* 40’631’627
40 3.278. 1O-21 3.050~10~0
100 1.868. 1o-7o 5.353. 1o6g

Table 2: Probability that a point lies within the largest
range query inside R, and the expected database size.

Observation 5 (Expected NN-distance) Following
Berchtold et al. [4], let P[Q, T] be the probability, that
the NN-distance is at most T (i.e. the probability that
nn(Q) is contained in spd(Q, r)). This probability dis-
tribution function is most easily expressed in terms of
its complement, that is, in terms of the probability
that all N points lie outside the hyper-sphere:

P[Q,,] = 1 - (1 - VoZ (spd(Q, T)” R))S (5)

The expected NN-distance for a query point Q can be
obtained by integrating over all radii T:

E[Q, nndtst (6)

Finally, the expected NN-distance E[n7tdist] for any
query point in the data space is the average of
E[Q, wtd’st] over all possible points Q in R:

E[7dSf] = /- E[Q,nndast] dQ (7)
QER

Based on this formula, we used the Monte-Carlo
method to estimate NN-distances. Figure 3 shows this
distance as a function of dimensionality, and Figure 4
of the number of data points. Notice, that, E[w,““~~]
can become much larger than the length of the data
space itself. The main conclusions are:

1. The NN-distance grows steadily with d, and

2. Beyond trivially-small data sets 2), NN-distances
decrease only marginally as the size of D increases.

As a consequence of the expected large NN-dist,ance,
objects are widely scattered and, as we shall see, the
probability of being able to identify a good partitioning
of the data space diminishes.

3 Analysis of Nearest-Neighbor Search
This section establishes a number of analytical re-
sults as to the average performance of nearest-neighbor
search in partitioned and clustered organizations of
vector spaces. The main objective of this analysis is
to provide formulae that allow us to accurately pre-
dict the average cost of NN-searches in HDVSs. Based
on these cost formulae, we show formally, under the
assumptions of uniformity and independence, that:

197

N=l’OOO’OOO

‘“T-----l

0 100 200 400
Number of dime%ns (d)

500

Figure 3: E[nndist] as a function of the dimensionality.

l Conventional data- and space-partitioning struc-
tures are out-performed by a sequential scan al-
ready at dimensionality of around 10 or higher.

l There is no organization of HDVS based on par-
titioning or clustering which does not degenerate
to a sequential scan if dimensionality exceeds a
certain threshold.

We first introduce our general cost model, and show
that, for practical relevant approaches to space- and
data-partitioning, nearest-neighbor search degrades to
a (poor) sequential scan. As an important, quantita-
tive consequence, these methods are out-performed by
a sequential scan whenever the dimensionality is higher
than around 10. Whereas this first result is important
from a practical point of view, we second investigate
a general class of indexing schemes from a theoreti-
cal perspect,ive. Namely, we derive formally that the
complexity of any partitioning and clustering scheme
converges to O(N) with increasing dimensionality, and
that, ultimately, all objects must be accessed in order
to evaluate a nearest-neighbor query.

3.1 General Cost Model

For disk-resident databases, we use the number of
blocks which must be accessed as a measure of the
amount of IO which must be performed, and hence
of the ‘cost’ of a query. A nearest-neighbor search
algorithm is optimal if the blocks visited during the
search are exactly those whose minimum bounding re-
gions (MBR) intersect the NN-sphere. Such an algo-
rithm has been proposed by Hjaltson and Samet [23],
and shown to be optimal by Berchtold et al. [5]. This
algorithm visits blocks in increasing order of their min-
imal distance to the query point, and stops as soon as
a point is encountered which lies closer to the query
point than all remaining blocks.

Given this optimal algorit,hm, let Mvzsit denote the
number of blocks visited. Then M,,iszt is equal to
the number of blocks which intersect the NN-sphere
nnSP(Q) with, on average, the radius E[nndEst]. To es-
timate Mvisit, we transform the spherical query into a

&40 ..L..
d=lOO (I
d=200 *

- ot 1
200000 400000 600000 600000 1 I?+06

Number of data points (N)

Figure 4: E[nndist] as a function of the database size.

point query by the technique of Minkowski sum follow-
ing [5]. The enlarged object MSum (mbri, E[nndist])
consists of all points that are contained by mbri or
have a smaller distance to the surface of mbrl than
E[r~n~~‘~] (e.g. see in Figure 5, the shaded object on
the right hand side). The volume of the part of this re-
gion which is within the data space corresponds to the
fraction of all possible queries in R whose NN-spheres
intersect the block. Therefore, the probability that the
i-th block must be visited is given by:

P”,s,t[i] = Vol (mum (mbr,, E[nn”“‘]) n R) (8)

The expected number of blocks which must be visited
is given by the sum of this probability over all blocks.
If we assume m objects per block, we arrive at:

This formula depends upon the geometry of mbr,.
In the following, we extend this analysis for both
the case that MBRs are hyper-rectangles (e.g. R*-
tree and X-tree), and the case that MBRs are hyper-
spheres (e.g. TV-tree and M-tree).

In our comparisons, we use a well-tuned sequential
scan as a benchmark. Under this approach, data is
organized sequentially on disk, and the entire data set
is accessed during query processing. In addition to its
simplicity, a major advantage of this approach is that
a direct sequential scan of the data can expect a signif-
icant performance boost from the sequential nature of
its IO requests. Although a factor of 10 for this phe-
nomenon is frequently assumed elsewhere (and was ob-
served in our own PC and workstation environments),
we assume a more conservative factor of only 5 here.
Hence, we consider an index structure to work ‘well’
if, on average, less than 20% of blocks must be visited,
and to ‘fail’ if, on average, more than 20% of blocks
must be visited.

3.2 Space-Partitioning Methods

Space-partitioning methods like gridfiles [27], quad
trees [18] and K-D-B-trees [28] divide the data space

198

I I I I
spherical query point query

Figure 5: The transformation of a spherical query into
a point query (Minkowski sum).

along predefined or predetermined lines regardless of
clusters embedded in the data. In this section, we show
that either the space consumption of these structures
grows exponentially in the number of dimensions, or
NN-search results in visiting all partitions.

Space consumption of index structure: If each
dimension is split once, the total number of partitions
is 2”. Assuming B bytes for each directory/tree entry
of a partition, the space overhead is B 2d, even if
several partitions are stored together on a single block.

Visiting all partitions: In order to reduce the
space overhead, only d’ 5 d dimensions are split such
that,, on average, m points are assigned to a partition.
Thus, we obtain an upper bound:

(10)

Furthermore, each dimension is split at most once,
and, since data is distributed uniformly, the split po-
sition is always at 2. ’ 2 Hence, the MBR of a block has
d’ sides with a length of i, and d - d’ sides with a
length of 1. For any block, let l,,,, denote the max-
imum distance from that block to any point in the
data space (see Figure 6 for an example). Then l,,,,
is given by the equation:

1 7nar = ;xG = f
J--l

log, N
m (11)

Notice that l,,,, does not depend upon the dimension-
ality of the data set. Since the expected NN-distance
steadily grows with increasing dimensionality (Central
Limit Theorem), it is obvious that, at a certain number
of dimensions, l,,, becomes smaller than E[nndzSt]
(given by equation (7)). In that case, if we enlarge
the MBR by the expected NN-distance according to
Minkowski sum, the resulting region covers the entire
data space. The probability of visiting a block is 1.
Consequently, all blocks must be accessed, and even
NN-search by an optimal search algorithm degrades
to a (poor) scan of the entire data set. In Figure 7,

2Actually, it is not optimal to split in the middle as is shown
in [6]. However, an unbalanced splitting strategy also fits our
general case discussed in section 3.4.

Figure 6: I,,, in R = [0, 113 and d’ = 2

1 nlaz (for varying d’) is overlayed on the plot of the
expected NN-distance, as a function of dimensional-
ity (m = 100). For these configurations, if the dimen-
sionality exceeds around 60, then the entire data set
must be accessed, even for very large databases.

3.3 Data-Partitioning Methods

Data-partitioning methods like R-tree, X-tree and M-
tree partition the data space hierarchically in order
to reduce the search cost from O(N) to O(log(N)).
Next, we investigate such methods first, with rectangu-
lar, and then with spherical MBRs. In both cases, we
establish lower bounds on their average search cost,s.
Our goal is to show the (im)practicability of existing
methods for NN-search in HDVSs. In particular, we
show that a sequential scan out-performs these more
sophisticated hierarchical methods, even at relatively
low dimensionality.

3.3.1 Rectangular MBRs

Index methods such as R*-tree [2], X-tree [7] and SR.-
tree [2413 use hyper-cubes to bound the region of a
block. Usually, splitting a node results in two new,
equally-full partitions of the data space. As discussed
in Section 3.2, only d’ < d dimensions arc split at
high dimensionality (see equation (lo)), and, thus, the
rectangular MBR has d’ sides with a length of i, and
d - d’ sides with a length of 1. Following our general
cost model, the probability of visiting a block during
NN-search is given by the volume of that part of the
extended box that lies within the data space. Figure 8
shows the probability of accessing a block during a NN-
search for different database sizes, and different values
of d’. The graphs are only plotted for dimensions above
the number of split axes, that is 10, 14 and 17 for
105, lo6 and lo7 data points, respectively. Depending
upon the database size, the 20% threshold is exceeded
for dimensionality greater than around d = 15, d = 18,
and d = 20. Based on our earlier assumption about, the
performance of scan algorithms, these values provide
upper bounds on the dimensionality at which any data-
partitioning method with rectangular MBRs can be
expected to perform ‘well’. On the other hand, for
low-dimensional spaces (that is, for d < lo), there is
considerable scope for data.-partitioning methods to be

3SR.-tree also uses hyper-spheres.

199

Hyper-Cube MBR, m=lOO
12 -

E(NN-disl) -
10 lmax [N=lOO’OOO, d’=lO] -.-

lmax [N=l’OOO’OOO, d’=14]
lmax [N=lO’OOO’OOO. d’=17]

6

100 200 300 400
Number 01 dimensions (d)

Figure 7: Comparison of 1,,, with E[nndist].

effective in pruning the search space for efficient NN-
search (as is well-known in practice).

3.3.2 Spherical MBRs

The analysis above applies to index methods whose
MBRs are hyper-cubes. There exists another group of
index &uctures, however, such as the TV-tree [25], M-
tree [lo] and SR-tree [24], which use MBRs in the form
of hyper-spheres. In an optimal structure, each block
consists of the center point C and its m - 1 nearest
neighbors (where m again denotes the average number
of data points per block). Therefore, the MBR can be
described by the NN-sphere nnspJ’-’ (C) whose radius
is given by nn dist,m-l (C). If we now use a Minkowski
sum to transform this region, we enlarge the MBR by
the expected NN-distance E[nndZst]. The result is a
new hyper-sphere given by

sp” (c, nndisf~nL-* (C) + E[nnd’st])

The probability, that block i must, be visited during a
NN-search can be formulated as:

P,;&,t[i] 1 Vol ((spd c, nnd’Jt,‘~-‘(C)+E[nndlst 0 4
Since nndist,i does not decrease as i increases (that
is, Qj > i : nndist,j 2 nndistli), another lower
bound for this probability can be obtained by replac-
ing nndist,m-l by nndist,l = E[nndist]:

P;$t[i] > V0l (spd (C, 2 E[7md”st]) n 0) (12)

In order to obtain the probability of accessing a block
during the search, we average the above probability
over all center points C E 0:

Pt::;pvg 2 J’ V0l (spd (C, 2 E[TuI~‘“‘]) n R) dC (13)

C!ER

Figure 9 shows that the percentage of blocks vis-
ited increases rapidly with the dimensionality, and
reaches 100% with d = 45. This is a similar pat-
tern to that observed above for hyper-cube MBRs.
For d = 26, the critical performance threshold of 20%
is already exceeded, and a sequential scan will perform
better in practice, on average.

200

Hyper-Cube MBR, m=lOO
1 _ -

h 1

N=lOO’OOO [d’=lO] -
N=l’OOO’OOO [4’=14] -*

N=10’000’000 [d’=17] e

0 10 20 30 40 50 60
Number of dimensions (d)

Figure 8: Probability of accessing a block with rectan-
gular MBRs.

3.4 General Partitioning and Clustering
Schemes

The two preceding sections have shown that the per-
formance of many well-known index methods degrade
with increased dimensionality. In this section, we now
show that no partitioning or clustering scheme can of-
fer efficient NN-search if the number of dimensions be-
comes large. In particular, we demonstrate that the
complexity of such methods becomes O(N), and that
a large portion (up to 100%) of data blocks must be
read in order to determine the nearest neighbor.

In this section, we do not differentiate clustering,
data- and space-partitioning methods. Each of these
methods collects several data points which form a
partition/cluster, and stores these points in a single
block. We do not consider the organization of these
partitions/clusters since we are only interested in the
percentage of clusters that must be accessed during
NN-searches. In the following, the term ‘cluster’ de-
notes either a partition in a space- or data-partitioning
scheme, or a cluster in a clustering scheme. In order to
establish lower bounds on the probability of accessing
a cluster, we need the following basic assumptions:

1. A cluster is characterized by a geometrical
form (MBR) that covers all cluster points,

2. Each cluster contains at least two points, and

3. The MBR of a clust,er is convex.

These basic assumptions are necessary for indexing
methods in order to allow efficient pruning of t,he
search space during NN-searches. Given a query point,
and the MBR of a cluster, the contents of the clus-
ter can be excluded from the search, if and only if no
point within its MBR is a candidate for the nearest
neighbor of the query point. Thus, it must be possi-
ble to determine bounds on the distance between any
point within the MBR and the query point. Further,
assume that the second assumption were not to hold,
and that only a single point is stored in a cluster, and
the resulting structure is a sequential file. In a tree

Hyper-Sphere MBR. N=1’000’000
1 , T 1

0 10 20 30 40
Number of dimensions (d)

Figure 9: Probability of accessing a block with spher-
ical MBRs.

structure, as an example, the problem is then simply
shifted to the next level of the tree.

Lower Bounds on the Probability of Access-
ing a Block: Let 1 denote the number of clusters.
Each cluster Ci is delimited by a geometrical form
mbr(CZ). Based on the general cost model, we can
determine the average probability of accessing a clus-
ter during an NN-search (the function VM(o) is fur-
ther used as an abbreviation of the volume of the
Minkowski sum) :

W!(Z) E Vd (MSum (z, E[wL”“~]) n Cl) (14)

Since each cluster contains at least two points, we can
pick two arbitrary data points (say Ai and &) out
of the cluster and join them by the line line(A,, I?,).
As mbr(C%) is convex, line(Ai, B,) is contained in
mbr(C,), and, thus, we can lower bound the volume of
the extended mbr(Cz) by the volume of the extension
of line(A,, B,):

VM (mbr(C,)) 2 VM (line(A,, B,)) (15)

In order to underestimate the volume of the extended
lines joining Ai and Bi, we build line clusters with Ai
that have an optimal (i.e. minimal) minkowski sum,
and, thus, the probability of accessing these line clus-
ters becomes minimal. The minkowski sum depends
on the length and the position of the line. On aver-
age, we can lower bound the distance between Ai and
Bi by the expected NN-distance (equation (7)) and
the optimal line cluster (i.e. the one with the minimal
minkowski sum) for point Ai is the line line(A,,P,),
with Pi E surf(nns”(Ai))“, such that there is no other
point Q E surf (nnsp(A,)) with a smaller minkowski
sum for line(A,, Q):

VM (Zine(A,, B,)) 2 VA4 (line(A,, P,))

min
= QEsurf(nnV(A,))

VA4 (Zine(A,, Q))

with Pi E surf(nnSP(A,)) (16)

4surf(e) denotes the surface of.

1

P
.L?
it 0.6

z
8
ZI 0.6

ii
:* .p 0.4

B
d 0.2

z

0

Line MBR (Limiling Case), N=1’000’000

e..
0 500 1000 1500 2000

Number of dimensions (d)

Figure 10: Probability of accessing a block in a general
indexing scheme.

Equation (16) can easily be verified by assum-
ing the contrary-i.e. the average Minkowski sum of
Zine(Ai,Bi) is smaller than the one of line(A,,P,)---
and deriving a contradiction.

Therefore, we can lower bound the average proba-
bility of accessing a line clusters by determining the
average volume of minkowski sums over all possible
pairs A and P(A) in the data space:

P a”g “lslt = i 2 VM (mbr(C,)) ~/VM (line(A, P(A)))dA
2=1 AER

(17)

with P(A) E surf (nn’p (A)) and minimizing the Mink-
owski sum analogously to equation (16). In Figure 10,
this lower bound on Ptzft is plotted which was ob-
tained by a Monte Carlo simulation of equation (17).
The graph shows that P,“zft steadily increases and
finally converges to 1. In other words, all clusters
must be accessed in order to find the nearest neighbor.
Based on our assumption about the performance of
scan algorithms, the 20% threshold is exceeded when
d 2 610. In other words, no clustering or partitioning
method can offer better performance, on average, than
a sequential scan, at dimensionality greater that 610.
From equation (17) and Figure 10 we draw the follow-
ing (obvious) conclusions (always having our assump-
tions in mind):

Conclusion 1 (Performance) For any clustering

and partitioning method there is a dimensionality d
beyond which a simple sequential scan performs better.
Because equation (17) establishes a crude estimation,

in practice this threshold d^ will be well below 610.

Conclusion 2 (Complexity) The complexity of any
clustering and partitioning methods tends towards
O(N) as dimensionality increases.

Conclusion 3 (Degeneration) For every partition-
ing and clustering method there is a dimensionality d
such that, on average, all blocks are accessed if the
number of dimensions exceeds d.

201

data space .,^^+^r ,.4-t- @I 01

Elf-
0,

l 4

00 01 10 11

“rlrl”, ua.La
01 0.1 0.9

c& 0.6 0.6

H--i
0.1 0.4

l 4 0.9 0.1

,-I

approximation

01 0011

1 1011

0, 00 01

l r 1 1100

Figure 11: Building the VA-File

4 Object Approximations for Similar-
ity Search

We have shown that, as dimensionality increases, the
performance of partitioning index methods degrades
to that of a linear scan. In this section, therefore,
we describe a simple method which accelerates that
unavoidable scan by using object approximations to
compress the vector data. The method, the so-called
vector approximation file (or ‘VA-File’), reduces the
amount of data that must be read during similarity
searches. We only sketch the method here, and present
the most relevant performance measurements. The in-
terested reader is referred to [34] for more detail.

4.1 The VA-File

The vector approximation file (VA-File) divides the
data space into 2b rectangular cells where b denotes
a user specified number of bits (e.g. some number of
bits per dimension). Instead of hierarchically organiz-
ing these cells like in grid-files or R-trees, the VA-File
allocates a unique bit-string of length b for each cell,
and approximates data points that fall into a cell by
that bit-string. The VA-File itself is simply an array
of these compact, geometric approximations. Nearest
neighbor queries are performed by scanning the entire
approximation file, and by excluding the vast majority
of vectors from the search (filtering step) based only
on these approximations.

Compressing Vector Data: For each dimension
i, a small number of bits (bi) is assigned (bi is typi-
cally between 4 and S), and 2b” slices along the dimen-
sion i are determined in such a way that all slices are
equally full. These slices are numbered 0, . . , 2b1 - 1
and are kept constant while inserting, deleting and up-
dating data points. Let b be the sum of all bi, i.e.
b = It=, bi. Then, the data space is divided into 2b
hyper-rectangular cells, each of which can be repre-
sented by a unique bit-string of length b. Each data
point is approximated by the bit-string of the cell into
which it falls. Figure 11 illustrates this for five sample
points. In addition to the basic vector data and the
approximations, only the boundary points along each

0.2
d=50, uniformly distributed, k=lO

@
afler fiRering step -

visited veclors -.+---. .-
.$j 0.15

3

$ e
.$ 0.1 -

3
B
s

0.05

8 i,.
‘*---.--.-*__.. _ .._._...

o-
*.- . . * . . * * r ._.._.._

100 200 300 400 500
Number of vectors (thousands)

Figure 12: Vector selectivity for the VA-File as a func-
tion of the database size. bi = 6 for all experiments.

dimension must be stored. Depending upon the accu-
racy of the data points and the number of bits chosen,
the approximation file is 4 to 8 times smaller than the
vector file. Thus, storage overhead ratio is very small,
on the order of 0.125 to 0.25.

Assume that for each dimension a small number of
bits is allocated (i.e. bi = 1, b = d ’ 1, 1 = 4.. .8), and
that the slices along each dimension are of equal size.
Then, the probability that a point lies within a cell is
proportional to volume of the cell:

P[“in cell”] = I/ol(cell) = -$
(>

d

= 2-b (18)

Given an approximation of a vector, the probability
that at least one vector shares the same approximation
is given by:

P[share] = 1 - (1 - 2-b)P-1 z g (19)

Assuming N = lo6 M 2”’ and b = 100, the above
probability is 2Z8’, and it becomes very unlikely that
several vectors lie in the same cell and share the same
approximation. Further, the number of cells (2b) is
much larger than the number of vectors (N) such that
the vast majority of the cells must be empty (compare
with observation 1). Consequently, we can use rough
approximations without risk of collisions. Obviously,
the VA-File benefits from the sparseness of HDVS as
opposed to partitioning or clustering methods.

The Filtering Step: When searching for the near-
est neighbor, the entire approximation file is scanned
and upper and lower bounds on the distance to the
query can easily be determined based on the rectan-
gular cell represented by the approximation. Assume
6 is the smallest upper bound found so far. If an ap-
proximation is encountered such that its lower bound
exceeds 6, the corresponding object can be eliminated
since at least one better candidate exists. Analogously,
we can define a filtering step when the k nearest neigh-
bor must be retrieved. A critical factor of the search
performance is the selectivity of this filtering step since
the remaining data objects are accessed in the vector

202

7”
N=lOO’OO0. uniformly distributed, k=iO N=WOOO, uniformly distributed, k=iO

0’ 7
100 200 300 400 500
Number of dimensions in vectors

Figure 13: Block selectivity as a function of dimen-
sionality. bi = 6 for all experiments.

file and random IO operations occur. If too many ob-
jects remain, the performance gain due to the reduced
volume of approximations is lost. The selectivity ex-
periments in Figure 12 shows improved vector selec-
tivity as the number of data points increases (d = 50,
lc = 10, bi = 6, uniformly distributed data). At
N = 500’000, less than 0.1% (=500) of the vectors
remain after this filtering step. Note that in this fig-
ure, the range of the y-axis is from 0 to 0.2%.

Accessing the Vectors: After the filtering step, a
small set of candidates remain. These candidates are
t,hen visited in increasing order of their lower bound
on the distance to the query point Q, and the accurate
distance to Q is determined. However, not all candi-
dates must be accessed. Rather, if a lower bound is
encountered that exceeds the (k-th) nearest distance
seen so far, the VA-file method stops. The result-
ing number of accesses to the vector file is shown in
Figure 12 for 10th nearest neighbor searches in a 50-
dimensional, uniformly distributed data set (bi = 6).
At N = 50’000, only 19 vectors are visited, while at
N = 500’000 only 20 vectors are accessed. Hence,
apart of the answer set (10) only a small number of ad-
ditional vectors are visited (g-10). Whereas Figure 12
plots the percentage of vectors visited, Figure 13 shows
that the percentage of visited blocks in the vector file
shrinks when dimensionality increases. This graph di-
rectly reflects the estimated IO cost of the VA-File and
exhibits that our 20% threshold is not reached by far,
even if the number of dimensions become very large.
In that sense, the VA-File overcomes the difficulties of
high dimensionality.

4.2 Performance Comparison

In order to demonstrate experimentally that our anal-
ysis is realistic, and to demonstrate that the VA-File
methods is a viable alternative, we performed many
evaluations based on synthetic as well as real data sets.
The following four search structures were evaluated:
The VA-File, the R*-tree, the X-tree and a simple se-
quential scan. The synthetic data set consisted of uni-

lM)-
1.‘.-

:
I

so- ,:
60. /

4. / .’

20 J.i ,:
?c. .

0 A..+’
.3-G,. o

0 5 10 15 20 25 30
Number of dimensions in vectors

Figure 14: Block selectivity of synthetic data. bi = 8
for all experiments.

N=WOOO, image database, k=lO

lii~

0 5 10 15 20 25 30 35 40 45
Number of dimensions in vectors

Figure 15: Block selectivity of real data. bi = 8 for all
experiments.

formly distributed data points. The real data set was
obtained by extracting 45-dimensional feature vectors
from an image database containing more than 50’000
images5. The number of nearest neighbor to search
was always 10 (i.e. k = 10). All experiments were per-
formed on a Sun SPARCstation 4 with 64 MBytes of
main memory and all data was stored on its local disk.
The scan algorithm retrieved data in blocks of 400K.
The block size of the X-tree, R*-tree and the vector
file of the VA-File was always 8K. The number of bits
per dimensions was 8.

Figure 14 and 15 depicts the percentage of blocks
visited for the synthetic and the real data set, respec-
tively, as a function of dimensionality. As predicted
by our analysis, the tree-methods degenerate to a scan
through all leaf nodes. In practice, based on our 20%
threshold, the performance of these data-partitioning
methods becomes worse than that of a simple scan if
dimensionality exceeds 10. On the other hand, the VA-
File improves with dimensionality and outperforms the

5The color similarity measure described by Stricker and
Orengo [32] generates g-dimensional feature vect,ors for each im-
age. A newer approach treats five overlapping parts of images
separately, and generates a 45-dimensional feature vector for
each image. Note: this method is not based on color histograms.

203

N=50’000, image database, k=lO

- Scan -
fq**ree -*---.
X-tree *

!/A-File 0
/--.- .’

,,F .I
*...- *:

i’
I I 1 I I

0 5 10 15 20 25 30 35 40 45
Number of dimensions in vectors

Figure 16: Wall-clock time for the image database.
bi = 8 for all experiments.

tree-methods beyond a dimensionality of 6.
We further performed timing experiments based on

the real data set and on a 5-dimensional, uniformly
distributed data set. In Figure 16, the elapsed time
for 10th nearest neighbor searches in the real data set
with varying dimensionality is plotted. Notice that
the scale of the y-axis is logarithmic in this figure.
In low-dimensional data spaces, the sequential scan
(5 2 d 2 6) and the X-tree (d < 5) produce least
disk operation and execute the nearest neighbor search
fastest. In high-dimensional data spaces, that is d > 6,
the VA-File outperforms all other methods. In Fig-
ure 17, the wall-clock results for the 5-dimensional,
uniformly distributed data set with growing database
size is shown (the graph of R*-tree is skipped since
all values were above 2 seconds). The cost of the X-
tree method grows linearly with the increasing number
of points, however, the performance gain compared to
the VA-File is not overwhelming. In fact, for higher
dimensional vector spaces (d > 6), the X-tree has lost
its advantage and the VA-File performs best.

5 Conclusions

In this paper we have studied the impact of di-
mensionality on the nearest-neighbor similarity-search
in HDVSs from a theoretical and practical point of
view. Under the assumption of uniformity and in-
dependence, we have established lower bounds on
the average performance of NN-search for space-
and data-partitioning, and clustering structures. We
have shown that these methods are out-performed by
a simple sequential scan at moderate dimensional-
ity (i.e. d = 10). Further, we have shown that any
partitioning scheme and clustering technique must de-
generate to a sequential scan through all their blocks
if the number of dimension is sufficiently large. Exper-
iments with synthetic and real data have shown that
the performance of R*-trees and X-trees follows our
analytical prediction, and that these tree-base struc-
tures are outperformed by a sequential scan by orders
of magnitude if dimensionality becomes large.

1.6

2 1.4
5
2 1.2

% 5 1

; 0.6

E

5

0.6

0.4

p 0.2

0

d=5, uniformly distributed, k=lO

Scan -
x-tree --c--

VA-File *

50 loo 150 200 2.50 300
Number of vectors (thousands)

Figure 17: Wall-clock time for a uniformly distributed
data set (d = 5). bi = 8 for all experiments.

Although real data sets are not uniformly dis-
tributed and dimensions may exhibit correlations, our
practical experiments have shown that multidimen-
sional index structures are not always the most appro-
priate approach for NN-search. Our experiments with
real data (color feature of a large image database) ex-
hibits the same degeneration as with uniform data if
the number of dimensions increases.

Given this analytical and practical basis, we pos-
tulate that all approaches to nearest-neighbor search
in HDVSs ultimately become linear at high dimen-
sionality. Consequently, we have described the VA-
File, an approximation-based organization for high-
dimensional data-sets, and have provided performance
evaluation for this and other methods. At moderate
and high dimensionality (d > 6), the VA-File method
can out-perform any other method known to the au-
thors. We have also shown that performance for this
method even improves as dimensionality increases

The simple and flat structure of the VA-File also
offers a number of important advantages such as
parallelism, distribution, concurrency and recovery,
all of which are non-trivial for hierarchical methods.
Moreover, the VA-File also supports weighted search,
thereby allowing relevance feedback to be incorpo-
rated. Relevance feedback can have a significant, im-
pact on search effectiveness.

We have implemented an image search engine and
provide a demo version on about 10’000 images. The
interested reader is encouraged to try it out.

http://www-dbs.inf.ethz.ch/weber-cgi/chariot.cgi

Acknowledgments

This work has been partially funded in the framework of the
European ESPRIT project HERMES (project no. 9141) by the
Swiss Bundesamt fiir Bildung zlnd Wissenshaft (BBW, grant
no. 93.0135), and partially by the ETH cooperative project on
Integrated Image Analysis and Retrieval. We thank the authors
of [2, 71 for making their R*-tree and X-tree implementations
available to us. We also thank Paolo Ciaccia, Pave1 Zezula,
Stefan Berchtold for many helpful discussions on the subject,
of this paper. Finally, we thank the reviewers for their helpful
comments.

204

References [181
[ll

PI

[31

[41

[51

PI

[71

PI

PI

1101

[Ill

[121

[I31

[I41

1151

1161

(171

D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Baas,
.I. Hellerstein, Y. Ioannidis, H. Jagadish, T. Johnson,
R. Ng, V. Poosala, K. Ross, and K. C. Sevcik. The New
Jersey data reduction report. Data Engineering, 20(4):3-
45, 1997.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of
Data, pages 322-331, Atlantic City, NJ, 23-25 May 1990.

J. Bentley and J. Friedman. Data structures for range
searching. ACM Computzng Surveys, 11(4):397-409,
Decmeber 1979.

S. Berchtold, C. BBhm, B. Braunmiiller, D. Keim, and H.-
P. Kriegel. Fast parallel similarity search in multimedia
databases. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 1-12, Tucson, USA, 1997.

S. Berchtold, C. BGhm, D. Keim, and H.-P. Kriegel. A cost
model for nearest neighbour search. In Proc. of the ACM
Symposium on Principles of Database Systems, pages 7%
86, Tucson, USA, 1997.

S. Berchtold, C. Biihm, and H.-P. Kriegel. Improving the
query performance of high-dimensional index structures by
bulk load operations. In Proc. of the Int. Conf. on Extend-
ing Database Technology, volume 6, pages 216-230, Valen-
cia, Spain, March 1998.

S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In Proc. of
the Int. Conference on Very Large Databases, pages 28-39,
1996.

T. Brinkhoff, H.-P. Kriegel, and R. Schneider. Com-
parison of approximations of complex objects used for
approximation-based query processing in spatial database
systems. In International Conference on Data Engineer-
ing, pages 40-49, Los Alamitos, Ca., USA, Apr. 1993.

T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger.
Multi-step processing of spatial joins. SIGMOD Record
(ACM Special Interest Group on Management of Data),
23(2):197-208, June 1994.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An effi-
cient access method for similarity search in metric spaces.
In Proc. of the Int. Conference on Very Large Databases,
Athens, Greece, 1997.

J. Cleary. Analysis of an algorithm for finding nearest-
neighbors in euclidean space. ACM Transactions on Math-
ematical Software, 5(2), 1979.

A. Csillaghy. Information extraction by local density analy-
sis: A contribution to content-based management of scien-
tific data. Ph.D. thesis, Institut fiir Informationssysteme,
1997.

A. Dimai. Differences of global features for region indexing.
Technical Report 177, ETH Ziirich, Feb. 1997.

C. Faloutsos. Access methods for text. ACM Comput-
ing Surveys, 17(1):49-74, Mar. 1985. Also published in/as:
“Multiattribute Hashing Using Gray Codes”, ACM SIG-
MOD, 1986.

C. Faloutsos. Searching Multimedia Databases By Content.
Kluwer Academic Press, 1996.

C. Faloutsos and S. Christodoulakis. Description and per-
formance analysis of signature file methods for office fil-
ing. ACM Transactions on Ofice Information Systems,
5(3):237-257, July 1987.

C. Faloutsos and I. Kamel. Beyond uniformity and inde-
pendence: Analysis of R-trees using the concept of fractal
dimension. In Proc. of the ACM Symposium on Principles
of Database Systems, 1994.

WI

PO1

WI

PI

1231

[241

[251

P61

[271

WI

PI

I301

1311

[321

[331

[341

R. Finkel and J. Bentley. Quad-trees: A data structure for
retrieval on composite keys. ACTA Informatica, 4(1):1&g,
1974.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q, Huang,
B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic,
D. Steele, and P. Yanker. Query by image and video con-
tent: The QBIC system. Computer, 28(9):23-32, Sept.
1995.

J. Friedman, J. Bentley, and R. Finkel. An algorithm for
finding best-matches in logarithmic time. TOMS, 3(3),
1977.

A. Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 47-57, Boston, MA, June
1984.

J. Hellerstein, E. Koutsoupias, and C. Papadimitriou. On
the analysis of indexing schemes. In Proc. of the ACM
Symposium on Principles of Database Systems, 1997.

G. Hjaltason and H. Samet. Ranking in spatial databases.
In Proceedings of the Fourth International Symposium on
Advances in Spatial Database Systems (SSD95), number
951 in Lecture Notes in Computer Science, pages 83-95,
Portland, Maine, Aug. 1995. Springer Verlag.

N. Katayama and S. Satoh. The SR-tree: An index struc-
ture for high-dimensional nearest neighbor queries. In PTOC.
of the ACM SIGMOD Int. Conj. on Management of Data,
pages 369-380, Tucson, Arizon USA, 1997.

K.-I. Lin, H. Jagadish, and C. Faloutsos. The TV-tree:
An index structure for high-dimensional data. The VLDB
Journal, 3(4):517-549, Oct. 1994.

D. Lomet. The hB-tree: A multiattribute indexing method
with good guaranteed performance. ACM Transactions on
Database Systems, 15(4):625-658, December 1990.

J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid
file: An adaptable symmetric multikey file structure. ACM
Transactions on Database Systems, 9(1):38-71, Mar. 1984.

J. Robinson. The k-d-b-tree: A search structure for large
multidimensional dynamic indexes. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages lo--18,
1981.

H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1989.

T. Sellis, N. Roussopoulos, and C. Faloustos. The KS-tree:
A dynamic index for multi-dimensional objects. In Proc. of
the Int. Conference on Very Large Databases, pages 507-
518, Brighton, England, 1987.

R. Sproull. Refinements to nearest-neighbor search in k-
dimensional trees. Algorithmica, 1991.

M. Stricker and M. Orengo. Similarity of color images.
In Storage and Retrieval for Image and Video Databases,
SPIE, San Jose, CA, 1995.

J. Ullman. Principles of Database and Knowledge-Base
Systems, volume 1. Computer Science Press, 1988.

R. Weber and S. Blott. An approximation based data struc-
ture for similarity search. Technical Report 24, ESPRIT
project HERMES (no. 9141), October 1997. Available at
http://www-dbs.ethz.ch/-weber/paper/TR1997b,ps.

205

