
JavaServer Pages™

Specification

Version2.0

please send comments to jsp-spec-comments@eng.sun.com

Final Release - November 24, 2003 Mark Roth

Eduardo Pelegrí-Llopart

4150 Network Circle

Santa Clara, CA 95054, USA

650 960-1300 fax: 650 969-9131

iii

JavaServer Pages 2.0 Specification

JavaServer PagesTM Specification (“Specification”)
Version: 2.0
Status: FCS
Release: November 24, 2003

 Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS
Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-

exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under the Sun’s applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation, which shall be understood to include developing applications intended
to run on an implementation of the Specification provided that such applications
do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any applicable
copyrights or patent rights it may have in the Specification to create and/or
distribute an Independent Implementation of the Specification that: (i) fully
implements the Spec(s) including all its required interfaces and functionality; (ii)
does not modify, subset, superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Java interfaces, fields or
methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (iii) passes the TCK
(including satisfying the requirements of the applicable TCK Users Guide) for
such Specification. The foregoing license is expressly conditioned on your not
acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any
other particular “pass through” requirements in any license You grant concerning
the use of your Independent Implementation or products derived from it.
However, except with respect to implementations of the Specification (and
products derived from them) that satisfy limitations (i)-(iii) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees
any licenses under Sun’s applicable intellectual property rights; nor (b) authorize
your licensees to make any claims concerning their implementation’s compliance
with the Spec in question.

iv

JavaServer Pages 2.0 Specification

For the purposes of this Agreement: “Independent Implementation” shall
mean an implementation of the Specification that neither derives from any of
Sun’s source code or binary code materials nor, except with an appropriate and
separate license from Sun, includes any of Sun’s source code or binary code
materials; and “Licensor Name Space” shall mean the public class or interface
declarations whose names begin with “java”, “javax”, “com.sun” or their
equivalents in any subsequent naming convention adopted by Sun through the
Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you
fail to comply with any material provision of or act outside the scope of the
licenses granted above.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade

names of Sun or Sun’s licensors is granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, the Java Coffee Cup logo, JSP, and JavaServer Pages are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO

REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER
RIGHTS. This document does not represent any commitment to release or
implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE
SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR
CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such

v

JavaServer Pages 2.0 Specification

changes in the Specification will be governed by the then-current license for the
applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL

SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY
OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN
IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the use or
distribution of your Java application, applet and/or clean room implementation;
and/or (iii) any claims that later versions or releases of any Specification furnished
to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the

U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government’s rights in the Specification and accompanying
documentation shall be only as set forth in this license; this is in accordance with
48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you

may find in connection with your use of the Specification (“Feedback”). To the
extent that you provide Sun with any Feedback, you hereby: (i) agree that such
Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#136181/Form ID#011801)

vi

JavaServer Pages 2.0 Specification

viiJavaServer Pages 2.0 Specification

Contents

Preface . xix

Status . xxvii
Overview . xxix

The JavaServer Pages™ Technology . xxix

Basic Concepts . xxxi

Users of JavaServer Pages . xxxiii

Part I . 1-1

JSP.1 Core Syntax and Semantics . 1-3
JSP.1.1 What Is a JSP Page . 1-3

JSP.1.1.1 Web Containers and Web Components 1-3
JSP.1.1.2 Generating HTML . 1-4
JSP.1.1.3 Generating XML . 1-4
JSP.1.1.4 Translation and Execution Phases 1-4
JSP.1.1.5 Validating JSP pages . 1-5
JSP.1.1.6 Events in JSP Pages . 1-6
JSP.1.1.7 JSP Configuration Information 1-6
JSP.1.1.8 Naming Conventions for JSP Files 1-6
JSP.1.1.9 Compiling JSP Pages . 1-7
JSP.1.1.10 Debugging JSP Pages 1-8

JSP.1.2 Web Applications . 1-8
JSP.1.2.1 Relative URL Specifications 1-9

JSP.1.3 Syntactic Elements of a JSP Page 1-10
JSP.1.3.1 Elements and Template Data 1-10
JSP.1.3.2 Element Syntax . 1-10
JSP.1.3.3 Start and End Tags . 1-11
JSP.1.3.4 Empty Elements . 1-12
JSP.1.3.5 Attribute Values . 1-12
JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements

 . 1-12
JSP.1.3.7 Valid Names for Actions and Attributes 1-14
JSP.1.3.8 White Space . 1-14
JSP.1.3.9 JSP Documents . 1-15

viii

JavaServer Pages 2.0 Specification

JSP.1.3.10 JSP Syntax Grammar 1-16
JSP.1.4 Error Handling . 1-33

JSP.1.4.1 Translation Time Processing Errors 1-33
JSP.1.4.2 Request Time Processing Errors 1-33
JSP.1.4.3 Using JSPs as Error Pages 1-34

JSP.1.5 Comments . 1-34
JSP.1.5.1 Generating Comments in Output to Client . . . 1-34
JSP.1.5.2 JSP Comments . 1-35

JSP.1.6 Quoting and Escape Conventions 1-35
JSP.1.7 Overall Semantics of a JSP Page 1-37
JSP.1.8 Objects . 1-38

JSP.1.8.1 Objects and Variables 1-38
JSP.1.8.2 Objects and Scopes . 1-39
JSP.1.8.3 Implicit Objects . 1-40
JSP.1.8.4 The pageContext Object 1-42

JSP.1.9 Template Text Semantics . 1-42
JSP.1.10 Directives . 1-42

JSP.1.10.1 The page Directive . 1-43
JSP.1.10.2 The taglib Directive . 1-49
JSP.1.10.3 The include Directive 1-51
JSP.1.10.4 Implicit Includes . 1-52
JSP.1.10.5 Including Data in JSP Pages 1-52
JSP.1.10.6 Additional Directives for Tag Files 1-54

JSP.1.11 EL Elements . 1-54
JSP.1.12 Scripting Elements . 1-54

JSP.1.12.1 Declarations . 1-55
JSP.1.12.2 Scriptlets . 1-56
JSP.1.12.3 Expressions . 1-57

JSP.1.13 Actions . 1-58
JSP.1.14 Tag Attribute Interpretation Semantics 1-58

JSP.1.14.1 Request Time Attribute Values 1-58
JSP.1.14.2 Type Conversions . 1-59

JSP.2 Expression Language . 1-63
JSP.2.1 Overview . 1-63
JSP.2.2 The Expression Language in JSP 2.0 1-64

JSP.2.2.1 Expressions and Attribute Values 1-64
JSP.2.2.2 Expressions and Template Text 1-65
JSP.2.2.3 Implicit Objects . 1-66
JSP.2.2.4 Deactivating EL Evaluation 1-67

ix

JavaServer Pages 2.0 Specification

JSP.2.2.5 Disabling Scripting Elements 1-67
JSP.2.3 General Syntax of the Expression Language 1-67

JSP.2.3.1 Overview . 1-68
JSP.2.3.2 Literals . 1-68
JSP.2.3.3 Errors, Warnings, Default Values 1-68
JSP.2.3.4 Operators "[]" and "." 1-68
JSP.2.3.5 Arithmetic Operators 1-69
JSP.2.3.6 Logical Operators . 1-73
JSP.2.3.7 Empty Operator - empty A 1-73
JSP.2.3.8 Conditional Operator - A ? B : C 1-74
JSP.2.3.9 Parentheses . 1-74
JSP.2.3.10 Operator Precedence 1-74

JSP.2.4 Reserved Words . 1-75
JSP.2.5 Named Variables . 1-75
JSP.2.6 Functions . 1-75

JSP.2.6.1 Invocation Syntax . 1-76
JSP.2.6.2 Tag Library Descriptor Information 1-76
JSP.2.6.3 Example . 1-77
JSP.2.6.4 Semantics . 1-77

JSP.2.7 Implicit Objects . 1-78
JSP.2.8 Type Conversion . 1-78

JSP.2.8.1 To Coerce a Value X to Type Y 1-78
JSP.2.8.2 Coerce A to String . 1-79
JSP.2.8.3 Coerce A to Number type N 1-79
JSP.2.8.4 Coerce A to Character 1-80
JSP.2.8.5 Coerce A to Boolean 1-80
JSP.2.8.6 Coerce A to Any Other Type T 1-80

JSP.2.9 Collected Syntax . 1-81

JSP.3 JSP Configuration . 1-85
JSP.3.1 JSP Configuration Information in web.xml 1-85
JSP.3.2 Taglib Map . 1-85
JSP.3.3 JSP Property Groups . 1-86

JSP.3.3.1 JSP Property Groups 1-86
JSP.3.3.2 Deactivating EL Evaluation 1-87
JSP.3.3.3 Disabling Scripting Elements 1-89
JSP.3.3.4 Declaring Page Encodings 1-89
JSP.3.3.5 Defining Implicit Includes 1-90
JSP.3.3.6 Denoting XML Documents 1-91

x

JavaServer Pages 2.0 Specification

JSP.4 Internationalization Issues . 1-93
JSP.4.1 Page Character Encoding . 1-94
JSP.4.2 Response Character Encoding 1-95
JSP.4.3 Request Character Encoding . 1-96
JSP.4.4 XML View Character Encoding 1-96
JSP.4.5 Delivering Localized Content 1-96

JSP.5 Standard Actions . 1-99
JSP.5.1 <jsp:useBean> . 1-99
JSP.5.2 <jsp:setProperty> . 1-105
JSP.5.3 <jsp:getProperty> . 1-107
JSP.5.4 <jsp:include> . 1-109
JSP.5.5 <jsp:forward> . 1-110
JSP.5.6 <jsp:param> . 1-112
JSP.5.7 <jsp:plugin> . 1-112
JSP.5.8 <jsp:params> . 1-115
JSP.5.9 <jsp:fallback> . 1-115
JSP.5.10 <jsp:attribute> . 1-115
JSP.5.11 <jsp:body> . 1-118
JSP.5.12 <jsp:invoke> . 1-119

JSP.5.12.1 Basic Usage . 1-119
JSP.5.12.2 Storing Fragment Output 1-119
JSP.5.12.3 Providing a Fragment Access to Variables . . 1-120

JSP.5.13 <jsp:doBody> . 1-121
JSP.5.14 <jsp:element> . 1-122
JSP.5.15 <jsp:text> . 1-124
JSP.5.16 <jsp:output> . 1-125
JSP.5.17 Other Standard Actions . 1-129

JSP.6 JSP Documents . 1-131
JSP.6.1 Overview of JSP Documents and of XML Views . . . 1-131
JSP.6.2 JSP Documents . 1-133

JSP.6.2.1 Identifying JSP Documents 1-133
JSP.6.2.2 Overview of Syntax of JSP Documents 1-134
JSP.6.2.3 Semantic Model . 1-135
JSP.6.2.4 JSP Document Validation 1-136

JSP.6.3 Syntactic Elements in JSP Documents 1-136
JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries

1-136
JSP.6.3.2 The jsp:root Element 1-137

xi

JavaServer Pages 2.0 Specification

JSP.6.3.3 The jsp:output Element 1-138
JSP.6.3.4 The jsp:directive.page Element 1-139
JSP.6.3.5 The jsp:directive.include Element 1-139
JSP.6.3.6 Additional Directive Elements in Tag Files . 1-139
JSP.6.3.7 Scripting Elements . 1-139
JSP.6.3.8 Other Standard Actions 1-140
JSP.6.3.9 Template Content . 1-140
JSP.6.3.10 Dynamic Template Content 1-141

JSP.6.4 Examples of JSP Documents 1-142
JSP.6.4.1 Example: A simple JSP document 1-142
JSP.6.4.2 Example: Generating Namespace-aware documents

1-143
JSP.6.4.3 Example: Generating non-XML documents 1-143
JSP.6.4.4 Example: Using Custom Actions and Tag Files 1-

145
JSP.6.5 Possible Future Directions for JSP documents 1-146

JSP.6.5.1 Generating XML Content Natively 1-146
JSP.6.5.2 Schema and XInclude Support 1-147

JSP.7 Tag Extensions . 1-149
JSP.7.1 Introduction . 1-149

JSP.7.1.1 Goals . 1-150
JSP.7.1.2 Overview . 1-151
JSP.7.1.3 Classic Tag Handlers 1-152
JSP.7.1.4 Simple Examples of Classic Tag Handlers . 1-152
JSP.7.1.5 Simple Tag Handlers 1-154
JSP.7.1.6 JSP Fragments . 1-156
JSP.7.1.7 Simple Examples of Simple Tag Handlers . 1-156
JSP.7.1.8 Attributes With Dynamic Names 1-158
JSP.7.1.9 Event Listeners . 1-158

JSP.7.2 Tag Libraries . 1-158
JSP.7.2.1 Packaged Tag Libraries 1-158
JSP.7.2.2 Location of Java Classes 1-159
JSP.7.2.3 Tag Library directive 1-159

JSP.7.3 The Tag Library Descriptor 1-160
JSP.7.3.1 Identifying Tag Library Descriptors 1-160
JSP.7.3.2 TLD resource path . 1-161
JSP.7.3.3 Taglib Map in web.xml 1-161
JSP.7.3.4 Implicit Map Entries from TLDs 1-162
JSP.7.3.5 Implicit Map Entries from the Container . . . 1-162

xii

JavaServer Pages 2.0 Specification

JSP.7.3.6 Determining the TLD Resource Path 1-162
JSP.7.3.7 Translation-Time Class Loader 1-164
JSP.7.3.8 Assembling a Web Application 1-164
JSP.7.3.9 Well-Known URIs . 1-165
JSP.7.3.10 Tag and Tag Library Extension Elements . . 1-165

JSP.7.4 Validation . 1-169
JSP.7.4.1 Translation-Time Mechanisms 1-169
JSP.7.4.2 Request-Time Errors 1-170

JSP.7.5 Conventions and Other Issues 1-171
JSP.7.5.1 How to Define New Implicit Objects 1-171
JSP.7.5.2 Access to Vendor-Specific information 1-172
JSP.7.5.3 Customizing a Tag Library 1-172

JSP.8 Tag Files . 1-173
JSP.8.1 . Overview 1-173
JSP.8.2 Syntax of Tag Files . 1-174
JSP.8.3 Semantics of Tag Files . 1-174
JSP.8.4 Packaging Tag Files . 1-176

JSP.8.4.1 Location of Tag Files 1-176
JSP.8.4.2 Packaging in a JAR . 1-176
JSP.8.4.3 Packaging Directly in a Web Application . . 1-177
JSP.8.4.4 Packaging as Precompiled Tag Handlers . . . 1-178

JSP.8.5 Tag File Directives . 1-179
JSP.8.5.1 The tag Directive . 1-179
JSP.8.5.2 The attribute Directive 1-182
JSP.8.5.3 The variable Directive 1-183

JSP.8.6 Tag Files in XML Syntax . 1-186
JSP.8.7 XML View of a Tag File . 1-186
JSP.8.8 Implicit Objects . 1-186
JSP.8.9 Variable Synchronization . 1-188

JSP.8.9.1 Synchronization Points 1-189
JSP.8.9.2 Synchronization Examples 1-190

JSP.9 Scripting . 1-195
JSP.9.1 Overall Structure . 1-195

JSP.9.1.1 Valid JSP Page . 1-195
JSP.9.1.2 Reserved Names . 1-196
JSP.9.1.3 Implementation Flexibility 1-196

JSP.9.2 Declarations Section . 1-197
JSP.9.3 Initialization Section . 1-197

xiii

JavaServer Pages 2.0 Specification

JSP.9.4 Main Section . 1-197
JSP.9.4.1 Template Data . 1-197
JSP.9.4.2 Scriptlets . 1-198
JSP.9.4.3 Expressions . 1-198
JSP.9.4.4 Actions . 1-198

JSP.10 XML View . 1-201
JSP.10.1 XML View of a JSP Document, JSP Page or Tag File . . 1-

201
JSP.10.1.1 JSP Documents and Tag Files in XML Syntax . 1-

201
JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax 1-202
JSP.10.1.3 JSP Comments . 1-203
JSP.10.1.4 The page Directive . 1-203
JSP.10.1.5 The taglib Directive 1-203
JSP.10.1.6 The include Directive 1-204
JSP.10.1.7 Declarations . 1-204
JSP.10.1.8 Scriptlets . 1-204
JSP.10.1.9 Expressions . 1-205
JSP.10.1.10 Standard and Custom Actions 1-205
JSP.10.1.11 Request-Time Attribute Expressions 1-205
JSP.10.1.12 Template Text and XML Elements 1-206
JSP.10.1.13 The jsp:id Attribute 1-207
JSP.10.1.14 The tag Directive . 1-207
JSP.10.1.15 The attribute Directive 1-207
JSP.10.1.16 The variable Directive 1-207

JSP.10.2 Validating an XML View of a JSP page 1-208
JSP.10.3 Examples . 1-208

JSP.10.3.1 A JSP document . 1-208
JSP.10.3.2 A JSP page and its corresponding XML View . 1-

209
JSP.10.3.3 Clearing Out Default Namespace on Include 1-210
JSP.10.3.4 Taglib Direcive Adds to Global Namespace 1-211
JSP.10.3.5 Collective Application of Inclusion Semantics . 1-

211

Part II. 2-1

JSP.11 JSP Container . 2-3
JSP.11.1 JSP Page Model . 2-3

xiv

JavaServer Pages 2.0 Specification

JSP.11.1.1 Protocol Seen by the Web Server 2-3
JSP.11.2 JSP Page Implementation Class 2-5

JSP.11.2.1 API Contracts . 2-6
JSP.11.2.2 Request and Response Parameters 2-7
JSP.11.2.3 Omitting the extends Attribute 2-8
JSP.11.2.4 Using the extends Attribute 2-10

JSP.11.3 Buffering . 2-11
JSP.11.4 Precompilation . 2-12

JSP.11.4.1 Request Parameter Names 2-12
JSP.11.4.2 Precompilation Protocol 2-13

JSP.11.5 Debugging Requirements . 2-13
JSP.11.5.1 Line Number Mapping Guidelines 2-14

JSP.12 Core API . 2-17
JSP.12.1 JSP Page Implementation Object Contract 2-17

JSP.12.1.1 JspPage . 2-17
JSP.12.1.2 HttpJspPage . 2-19
JSP.12.1.3 JspFactory . 2-20
JSP.12.1.4 JspEngineInfo . 2-22

JSP.12.2 Implicit Objects . 2-22
JSP.12.2.1 JspContext . 2-22
JSP.12.2.2 PageContext . 2-27
JSP.12.2.3 JspWriter . 2-34
JSP.12.2.4 ErrorData . 2-42

JSP.12.3 An Implementation Example . 2-43
JSP.12.4 Exceptions . 2-44

JSP.12.4.1 JspException . 2-44
JSP.12.4.2 JspTagException . 2-46
JSP.12.4.3 SkipPageException . 2-47

JSP.13 Tag Extension API . 2-49
JSP.13.1 Classic Tag Handlers . 2-50

JSP.13.1.1 JspTag . 2-53
JSP.13.1.2 Tag . 2-53
JSP.13.1.3 IterationTag . 2-58
JSP.13.1.4 TryCatchFinally . 2-61
JSP.13.1.5 TagSupport . 2-62

JSP.13.2 Tag Handlers that want Access to their Body Content 2-66
JSP.13.2.1 BodyContent . 2-66
JSP.13.2.2 BodyTag . 2-68

xv

JavaServer Pages 2.0 Specification

JSP.13.2.3 BodyTagSupport . 2-72
JSP.13.3 Dynamic Attributes . 2-74

JSP.13.3.1 DynamicAttributes . 2-75
JSP.13.4 Annotated Tag Handler Management Example 2-76
JSP.13.5 Cooperating Actions . 2-79
JSP.13.6 Simple Tag Handlers . 2-80

JSP.13.6.1 SimpleTag . 2-82
JSP.13.6.2 SimpleTagSupport . 2-84
JSP.13.6.3 TagAdapter . 2-86

JSP.13.7 JSP Fragments . 2-88
JSP.13.7.1 JspFragment . 2-91

JSP.13.8 Example Simple Tag Handler Scenario 2-92
JSP.13.9 Translation-time Classes . 2-98

JSP.13.9.1 TagLibraryInfo . 2-101
JSP.13.9.2 TagInfo . 2-104
JSP.13.9.3 TagFileInfo . 2-108
JSP.13.9.4 TagAttributeInfo . 2-110
JSP.13.9.5 PageData . 2-112
JSP.13.9.6 TagLibraryValidator 2-112
JSP.13.9.7 ValidationMessage . 2-114
JSP.13.9.8 TagExtraInfo . 2-115
JSP.13.9.9 TagData . 2-117
JSP.13.9.10 VariableInfo . 2-119
JSP.13.9.11 TagVariableInfo . 2-122
JSP.13.9.12 FunctionInfo . 2-124

JSP.14 Expression Language API . 2-127
JSP.14.1 Expression Evaluator . 2-127

JSP.14.1.1 ExpressionEvaluator 2-128
JSP.14.1.2 Expression . 2-130
JSP.14.1.3 VariableResolver . 2-130
JSP.14.1.4 FunctionMapper . 2-131

JSP.14.2 Exceptions . 2-132
JSP.14.2.1 ELException . 2-132
JSP.14.2.2 ELParseException . 2-133

JSP.14.3 Code Fragment . 2-134

Part III . 3-1

xvi

JavaServer Pages 2.0 Specification

JSP.A Packaging JSP Pages . 3-3
JSP.A.1 A Very Simple JSP Page . 3-3
JSP.A.2 The JSP Page Packaged as Source in a WAR File 3-3
JSP.A.3 The Servlet for the Compiled JSP Page 3-4
JSP.A.4 The Web Application Descriptor 3-5
JSP.A.5 The WAR for the Compiled JSP Page 3-6

JSP.B JSP Elements of web.xml . 3-7

JSP.B.1 XML Schema for JSP 2.0 Deployment Descriptor 3-7

JSP.C Tag Library Descriptor Formats 3-15

JSP.C.1 XML Schema for TLD, JSP 2.0 3-15
JSP.C.2 DTD for TLD, JSP 1.2 . 3-41
JSP.C.3 DTD for TLD, JSP 1.1 . 3-50

JSP.D Page Encoding Detection . 3-57

JSP.D.1 Detection Algorithm . 3-57

JSP.E Changes . 3-61

JSP.E.1 Changes between JSP 2.0 PFD3 and JSP 2.0 Final . . . 3-61
JSP.E.2 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3 . . 3-62
JSP.E.3 Changes between JSP 2.0 PFD and JSP 2.0 PFD2 . . . 3-64
JSP.E.4 Changes between JSP 2.0 PFD1a and JSP 2.0 PFD . . 3-68
JSP.E.5 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a . . 3-70
JSP.E.6 Changes between JSP 2.0 PD1 and JSP 2.0 PD2 3-71
JSP.E.7 Changes between JSP 2.0 CD2 and JSP 2.0 PD1 3-72
JSP.E.8 Changes between JSP 2.0 CD1 and JSP 2.0 CD2 3-73

E.8.1 Between CD2c and CD2 3-73
E.8.2 Between CD2b and CD2c 3-74
E.8.3 Between CD2a and CD2b 3-74
E.8.4 Changes between CD1 and CD2a 3-75

JSP.E.9 Changes between JSP 2.0 ED1 and JSP 2.0 CD1 3-75
E.9.5 JSP Fragments, .tag Files, and Simple Tag Handlers

3-75
E.9.6 Expression Language Added 3-75
E.9.7 EBNF Fixes . 3-76
E.9.8 I18N Clarifications . 3-76
E.9.9 Other Changes . 3-76

JSP.E.10 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1 . 3-

xvii

JavaServer Pages 2.0 Specification

76
E.10.10 Typographical Fixes and Version Numbers . . 3-76
E.10.11 Added EBNF Grammar for JSP Standard Syntax 3-

76
E.10.12 Added Users of JavaServer Pages Section . . . 3-77
E.10.13 Added Placeholders for Expression Language and

Custom Actions Using JSP 3-77
E.10.14 Added Requirement for Debugging Support . 3-77

JSP.E.11 Changes Between PFD 2 and Final Draft 3-77
E.11.15 Added jsp:id mechanism 3-77
E.11.16 Other Small Changes 3-77
E.11.17 Clarification of role of id 3-78
E.11.18 Clarifications on Multiple Requests and Threading

3-78
E.11.19 Clarifications on JSP Documents 3-78
E.11.20 Clarifications on Well Known Tag Libraries . 3-78
E.11.21 Clarified Impact of Blocks 3-79
E.11.22 Other Small Clarifications 3-79

JSP.E.12 Changes Between 1.2 PFD 1b and PFD 2 3-80
E.12.23 Added elements to Tag Library Descriptor . . 3-80
E.12.24 Changed the way version information is encoded into

TLD . 3-80
E.12.25 Assigning String literals to Object attributes . 3-80
E.12.26 Clarification on valid names for prefix, action and at-

tributes . 3-81
E.12.27 Clarification of details of empty actions 3-81
E.12.28 Corrections related to XML syntax 3-81
E.12.29 Other changes . 3-81

JSP.E.13 Changes Between 1.2 PFD and 1.2 PFD 1b 3-82
JSP.E.14 Changes Between 1.2 PD1 and 1.2 PFD 3-82

E.14.30 Deletions . 3-83
E.14.31 Additions . 3-83
E.14.32 Clarifications . 3-83
E.14.33 Changes . 3-84

JSP.E.15 Changes Between 1.1 and 1.2 PD1 3-84
E.15.34 Organizational Changes 3-84
E.15.35 New Document . 3-85
E.15.36 Additions to API . 3-85

xviii

JavaServer Pages 2.0 Specification

E.15.37 Clarifications . 3-86
E.15.38 Changes . 3-86

JSP.E.16 Changes Between 1.0 and 1.1 3-86
E.16.39 Additions . 3-86
E.16.40 Changes . 3-87

JSP.F Glossary . 3-89

xixJavaServer Pages 2.0 Specification

Preface

This document is the JavaServer™ Pages 2.0 Specification (JSP 2.0).
This specification was developed following the Java Community Process

(SM) (JCP). Comments from Experts, Participants, and the Public were reviewed,
and improvements were incorporated into the specification where applicable.

The original Java Specification Request (JSR-152) listed the version number
of the specifcation as 1.3. The scope and content of the specification effort did not
change, but the expert group realized that the new features would have a deep
impact in the development model of JSP applications and decided that 2.0 would
more appropriately reflect that impact.

Relation To JSP 1.2

JSP 2.0 extends the JavaServer Pages 1.2 Specification (JSP 1.2) in the follow-
ing ways:

• The JSP 2.0 specification requires the Java™ 2 Platform, Standard Edition ver-
sion 1.3 or later for standalone containers, and version 1.4 for containers that
are part of a Java 2 Enterprise Edition 1.4 environment. All JSP containers
must be able to run in a J2SE 1.4 environment.

• The JSP 2.0 specification uses the Servlet 2.4 specification for its web seman-
tics.

• A simple Expression Language (EL) has been added. The EL can be used to
easily access data from the JSP pages. The EL simplifies writing script-less
JSP pages that do not use Java scriptlets or Java expressions and thus have a
more controlled interaction with the rest of the Web Application.

xx

JavaServer Pages 2.0 Specification

• New syntax elements for defining custom actions using the JSP technology
directly have been added. These elements are delivered into .tag and .tagx files
which can be authored by developers and page authors alike to provide encap-
sulation and reusability of common actions.

• The XML syntax has been clarified and improved substantially. New standard
extensions have been added for JSP pages (.jspx) and for tag files (.tagx). We
expect that the new mechanisms will compel authors to use the XML syntax
to generate XML documents in JSP 2.0.

• An API for invoking the EL has been added. This API will likely be used in
the implementation of the EL in JSP 2.0 and JSTL but we expect it to also be
used in other technologies like JavaServer™ Faces.

• A new Simple Invocation Protocol has been added. This API exploits what we
expect to be the prevalent use of script-less pages. The simple invocation pro-
tocol avoids the complex “inverted closure” mechanism of the classic invoca-
tion protocol introduced in JSP 1.1 and is used for implementing tag files.

Major Version Number Upgrade (JSP 2.0)

The new features introduced in this specification such as a built-in expression
language, a new invocation protocol, and JSP fragments, together with the JSP Stan-
dard Tag Library, will have a substantial impact on the methodology page authors
will use to write JSP pages. The impact is strong enough that the expert group felt it
was appropriate to upgrade the major version number of the JSP specification to JSP
2.0.

Among other benefits, we believe this version number upgrade will help draw
developer’s attention to these new features. It will also allow one to more easily
differentiate between the two different programming models (JSP 1.x style vs.
JSP 2.x style).

Backwards Compatibility with JSP 1.2

Where possible, JSP 2.0 attempts to be fully backwards compatible with JSP
1.2. In some cases, there are ambiguities in the JSP 1.2 specification that have
been clarified in JSP 2.0. Because some JSP 1.2 containers behave differently,
some applications that rely on container-specific behavior may need to be adjusted
to work correctly in a JSP 2.0 environment.

xxi

JavaServer Pages 2.0 Specification

The following is a list of known backwards compatibility issues JSP
developers should be aware of:

1. Tag Library Validators that are not namespace aware and that rely solely on
the prefix parameter may not correctly validate some JSP 2.0 pages. This is be-
cause the XML view may contain tag library declarations in elements other
than jsp:root, and may contain the same tag library declaration more than once,
using different prefixes. The uri parameter should always be used by tag li-
brary validators instead. Existing JSP pages with existing tag libraries will not
have any problems.

2. Users may observe differences in I18N behavior on some containers due pri-
marily to ambiguity in the JSP 1.2 specification. Where possible, steps were
taken to minimize the impact on backwards compatibility and overall, JSP’s
I18N abilities have been greatly improved.

In JSP specification versions previous to JSP 2.0, JSP pages in XML syntax
("JSP documents") and those in standard syntax determined their page encod-
ing in the same fashion, by examining the pageEncoding or contentType
attributes of their page directive, defaulting to ISO-8859-1 if neither was
present.

As of JSP 2.0, the page encoding for JSP documents is determined as
described in section 4.3.3 and appendix F.1 of the XML specification, and the
pageEncoding attribute of those pages is only checked to make sure it is con-
sistent with the page encoding determined as per the XML specification.

As a result of this change, JSP documents that rely on their page encoding to
be determined from their pageEncoding attribute will no longer be decoded
correctly. These JSP documents must be changed to include an appropriate
XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on a per translation
unit basis whereas in JSP 2.0, page encodings are determined on a per-file
basis. Therefore, if a.jsp statically includes b.jsp, and a page encoding is
specified in a.jsp but not in b.jsp, in JSP 1.2 a.jsp’s encoding is used for b.jsp,
but in JSP 2.0, the default encoding is used for b.jsp.

3. The type coercion rules in Table JSP.1-11 have been reconciled with the EL
coercion rules. There are some exceptional conditions that will no longer re-
sult in an exception in JSP 2.0. In particular, when passing an empty String("")
to an attribute of a numeric type, a translation error or a NumberFormatExcep-
tion used to occur, whereas in JSP 2.0 a 0 will be passed in instead. See the

xxii

JavaServer Pages 2.0 Specification

new Table JSP.1-11 for details. In general, this is not expected to cause any
problems because these would have been exceptional conditions in JSP 1.2 and
the specification allowed for these exceptions to occur at either translation time
or request time.

The JSP container uses the version of web.xml to determine whether you are
running a JSP 1.2 application or a JSP 2.0 application. Various features may
behave differently depending on the version of web.xml. The following is a list of
things JSP developers should be aware of when upgrading their web.xml from
version Servlet 2.3 to version Servlet 2.4:

1. EL expressions will be ignored by default in JSP 1.2 applications. When up-
grading a web application to JSP 2.0, EL expressions will be interpreted by de-
fault. The escape sequence \$ can be used to escape EL expressions that should
not be interpreted by the container. Alternatively, the isELIgnored page direc-
tive attribute, or the <el-ignored> configuration element can be used to deacti-
vate EL for entire translation units. Users of JSTL 1.0 will need to either
upgrade their taglib imports to the JSTL 1.1 uris, or they will need to use the
_rt versions of the tags (e.g. c_rt instead of c, or fmt_rt instead of fmt).

2. Web applications that contain files with an extension of .jspx will have those
files interpreted as JSP documents, by default. You can use the JSP configu-
ration element <is-xml> to treat .jspx files as regular JSP pages, but there is no
way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. Any template text or at-
tribute value that appeared as \$ in JSP 1.2 used to output \$ but will now output
just $.

Licensing of Specification

Details on the conditions under which this document is distributed are described
in the license agreement on page iii.

Who Should Read This Document

This document is the authoritative JSP 2.0 specification. It is intended to pro-
vide requirements for implementations of JSP page processing, and support by web
containers in web servers and application servers. As an authoritative document, it

xxiii

JavaServer Pages 2.0 Specification

covers material pertaining to a wide audience, including Page Authors, Tag Library
Developers, Deployers, Container Vendors, and Tool Vendors.

This document is not intended to be a user’s guide. We expect other
documents will be created that will cater to different readerships.

Organization of This Document

This document comprises of a number of Chapters and Appendices that are
organized into 3 parts. In addition, the document contains a “Preface” (this section),
a “Status” on page xxvii, and an “Overview” on page xxix.

Part I contains several chapters intended for all JSP Page Authors. These
chapters describe the general structure of the language, including the expression
language, fragments, and scripting.

Part II contains detailed chapters on the JSP container engine and API in full
detail. The information in this part is intended for advanced JSP users.

Finally, Part III contains all the appendices.

Related Documents

Implementors of JSP containers and authors of JSP pages may find the follow-
ing documents worth consulting for additional information:

Table JSP.P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

Java 2 Platform, Standard Edition http://java.sun.com/products/jdk/1.3
http://java.sun.com/products/jdk/1.4

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

XML in the Java Platform home
page

http://java.sun.com/xml

JavaBeans™ technology home page http://java.sun.com/beans

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org

xxiv

JavaServer Pages 2.0 Specification

Historical Note

The following individuals were pioneers who did ground-breaking work on the
Java platform areas related to this specification. James Gosling’s work on a Web
Server in Java in 1994/1995 became the foundation for servlets. A larger project
emerged in 1996 with Pavani Diwanji as lead engineer and with many other key
members listed below. From this project came Sun’s Java Web Server product.

Things started to move quickly in 1999. The servlet expert group, with James
Davidson as lead, delivered the Servlet 2.1 specification in January and the Servlet
2.2 specification in December, while the JSP group, with Larry Cable and
Eduardo Pelegri-Llopart as leads, delivered JSP 1.0 in June and JSP 1.1 in
December.

The year 2000 saw a lot of activity, with many implementations of containers,
tools, books, and training that target JSP 1.1, Servlet 2.2, and the Java 2 Platform,
Enterprise Edition. Tag libraries were an area of intense development, as were
varying approaches to organizing all these features together. The adoption of JSP
technology has continued in the year 2001, with many talks at the “Web, Services
and beyond” track at JavaOne being dedicated to the technology.

The JSP 1.2 specification went final in 2001. JSP 1.2 provided a number of
fine-tunings of the spec. It also added the ability for validating JSP pages through
the XML views of a JSP page. JSP 1.2 also introduced a normative XML syntax
for JSP pages, but its adoption was handicaped by several specification
shortcomings.

JSP 2.0 is a major revision of the JSP language. Key new features include a
simple Expression Language, tag files, substantial simplifications for writing tag
handlers in Java and the notion of JSP fragments. JSP 2.0 also includes a revision
of the XML syntax that addresses most of the problems in JSP 1.2.

Tracking the industry in a printed document is at best difficult; the industry
pages at the web site at http://java.sun.com/products/jsp do a better job.

JSR-045 home page (Debugging
Support for Other Languages)

http://jcp.org/jsr/detail/45.jsp

Table JSP.P-1 Some Related Web Sites

JSP home page http://java.sun.com/products/jsp

Servlet home page http://java.sun.com/products/servlet

xxv

JavaServer Pages 2.0 Specification

Acknowledgments

Many people contributed to the JavaServer Pages specifications. The success
of the Java Platform depends on the Java Community Process used to define and
evolve it. This process, which involves many individuals and corporations,
promotes the development of high quality specifications in Internet time.

Although it is impossible to list all the individuals who have contributed to
this version of the specification, we would like to give thanks to all the members
in our expert group. We have the benefit of a very large, active and enthusiastic
expert group, without which the JSP specifications would not have succeeded.

We want to thank:
Nathan Abramson (Individual), Tim Ampe (Persistence Software Inc.),

Shawn Bayern (Individual), Hans Bergsten (Individual), Paul Bonfanti (New
Atlanta Communications Inc.), Prasad BV (Pramati Technologies), Bjorn Carlson
(America Online), Murthy Chintalapati (Sun Microsystems, Inc.), Kin-Man
Chung (Sun Microsystems, Inc.), Bill de hOra (InterX PLC), Ciaran Dynes
(IONA Technologies PLC), Jayson Falkner (Individual), James Goodwill
(Individual), Kouros Gorgani (Sybase), Randal Hanford (Boeing), Larry Isaacs
(SAS Institute Inc.), Kevin R. Jones (Developmentor), Francois Jouaux (Apple
Computer Inc.), Vishy Kasar (Borland Software Corporation), Ana Von Klopp
(Sun Microsystems, Inc.), Matt LaMantia (Art Technology Group, Inc.), Bart
Leeten (EDS), Geir Magnusson Jr. (Apache Software Foundation), Jason McGee
(IBM), Brian McKellar (SAP AG), Shawn McMurdo (Lutris Technologies),
Charles Morehead (Art Technology Group Inc.), Lars Oleson (SeeBeyond
Technology Corp.), Jeff Plager (Sybase), Boris Pruessmann (Adobe Systems,
Inc.), Tom Reilly (Macromedia, Inc.), Ricardo Rocha (Apache Software
Foundation), John Rousseau (Novell, Inc.), James Strachan (Individual),
Srinagesh Susarla (BEA Systems), Alex Yiu (Oracle).

We want to thank the community that implemented the reference
implementation, and the vendors that have implemented the spec, the authoring
tools, and the tag libraries.

Special mention is due to: Hans Bergsten for his numerous thorough reviews
and technical accuracy, Shawn Bayern for his tireless help with the EL and RI,
Alex Yiu for his thorough analysis on the invocation protocol and I18N, Nathan
Abramson for his in-depth technical expertise and ideas, Norbert Lindenberg for
his overhaul of the I18N chapter, Jan Luehe and Kin-Man Chung for keeping the
RI more than up-to-date with the specification allowing for real-time feedback,
Ana von Klopp for her help with JSR-45 debugging and keeping the tools

xxvi

JavaServer Pages 2.0 Specification

perspective fresh in our minds, and Umit Yalcinalp for her conversion of the TLD
and deployment descriptors into XML Schema.

We want to thank all the authors of books on JSP technology, and the creators
of the web sites that are tracking and facilitating the creation of the JSP
community.

The editors want to give special thanks to many individuals within the Java 2
Enterprise Edition team, and especially to Jean-Francois Arcand, Jennifer Ball,
Stephanie Bodoff, Pierre Delisle, Jim Driscoll, Cheng Fang, Robert Field, Justyna
Horwat, Dianne Jiao, Norbert Lindenberg, Ryan Lubke, Jan Luehe, Craig
McClanahan, Bill Shannon, Prasad Subramanian, Norman Walsh, Yutaka
Yoshida, Kathleen Zelony, and to Ian Evans for his editorial work.

Lastly, but most importantly, we thank the software developers, web authors
and members of the general public who have read this specification, used the
reference implementation, and shared their experience. You are the reason the
JavaServer Pages technology exists!

xxviiJavaServer Pages 2.0 Specification

Status

This is the final draft of the JSP 2.0 specification, developed by the expert
group JSR-152 under the Java Community Process (more details at http://jcp.org/
jsr/detail/152.jsp).

The original Java Specification Request (JSR-152) listed the version number
of the specification as 1.3. The scope and content of the specification effort has
not changed, but the expert group realized that the new features would have a deep
impact on the development model of JSP applications and decided that 2.0 would
more appropriately reflect that impact.

The Java Community Process

The JCP produces a specification using three communities: an expert commu-
nity (the expert group), the participants of the JCP, and the public-at-large. The
expert group is responsible for the authoring of the specification through a collection
of drafts. Specification drafts move from the expert community, through the partici-
pants, to the public, gaining in detail and completeness, always feeding received
comments back to the expert group. The final draft is submitted for approval by the
Executive Committee. The expert group lead is responsible for facilitating the work-
ings of the expert group, for authoring the specification, and for delivering the refer-
ence implementation and the conformance test suite.

The JCP and This Specification

The JCP is designed to be a very flexible process so each expert group can
address the requirements of the specific communities it serves. The reference imple-

xxviii

JavaServer Pages 2.0 Specification

mentation for JSP 2.0 and Servlet 2.4 uses code that is being developed as an open
source project under an agreement with the Apache Software Foundation.

This specification includes chapters that are derived directly from the Javadoc
comments in the API classes, but, were there to be any discrepancies, this
specification has precedence over the Javadoc comments.

The JCP process provides a mechanism for updating the specification through
a maintenance process using erratas. If available, the erratas will have precedence
over this specification.

xxixJavaServer Pages 2.0 Specification

Overview

This is an overview of the JavaServer Pages technology.

The JavaServer Pages™ Technology

JavaServer™ Pages (JSP) is the Java™ 2 Platform, Enterprise Edition (J2EE)
technology for building applications for generating dynamic web content, such as
HTML, DHTML, XHTML, and XML. JSP technology enables the easy authoring
of web pages that create dynamic content with maximum power and flexibility.

General Concepts

JSP technology provides the means for textual specification of the creation of a
dynamic response to a request. The technology builds on the following concepts:

• Template Data

A substantial portion of most dynamic content is fixed or template content.
Text or XML fragments are typical template data. JSP technology supports
natural manipulation of template data.

• Addition of Dynamic Data

JSP technology provides a simple, yet powerful, way to add dynamic data to
template data.

• Encapsulation of Functionality

JSP technology provides two related mechanisms for the encapsulation of
functionality: JavaBeans™ component architecture, and tag libraries deliver-

xxx

JavaServer Pages 2.0 Specification

ing custom actions, functions, listener classes, and validation.

• Good Tool Support

Good tool support leads to significantly improved productivity. Accordingly,
JSP technology has features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-
side technology.

Benefits of JavaServer Pages Technology

JSP technology offers the following benefits:

• Write Once, Run Anywhere™ properties

JSP technology is platform independent in its dynamic web pages, its web
servers, and its underlying server components. JSP pages may be authored on
any platform, run on any web server or web enabled application server, and
accessed from any web browser. Server components can be built on any plat-
form and run on any server.

• High quality tool support

Platform independence allows the JSP user to choose best-of-breed tools.
Additionally, an explicit goal of the JavaServer Pages design is to enable the
creation of high quality portable tools.

• Separation of Roles

JSP supports the separation of developer and author roles. Developers write
components that interact with server-side objects. Authors put static data and
dynamic content together to create presentations suited for their intended
audience.
Each group may do their job without knowing the job of the other. Each role
emphasizes different abilities and, although these abilities may be present in
the same individual, they most commonly will not be. Separation allows a nat-
ural division of labor.
A subset of the developer community may be engaged in developing reusable
components intended to be used by authors.

• Reuse of components and tag libraries

JavaServer Pages technology emphasizes the use of reusable components

xxxi

JavaServer Pages 2.0 Specification

such as JavaBeans components, Enterprise JavaBeans™ components, and tag
libraries. These components can be used with interactive tools for component
development and page composition, yielding considerable development time
savings. In addition, they provide the cross-platform power and flexibility of
the Java programming language or other scripting languages.

• Separation of dynamic and static content

JavaServer Pages technology enables the separation of static content in a tem-
plate from dynamic content that is inserted into the static template. This
greatly simplifies the creation of content. The separation is supported by
beans specifically designed for the interaction with server-side objects, and by
the tag extension mechanism.

• Support for actions, expressions, and scripting

JavaServer Pages technology supports scripting elements as well as actions.
Actions encapsulate useful functionality in a convenient form that can be
manipulated by tools. Expressions are used to access data. Scripts can be used
to glue together this functionality in a per-page manner.
The JSP 2.0 specification adds a simple expression language (EL) to Java-
based scripts. Expressions in the EL directly express page author concepts
like properties in beans and provide more controlled access to the Web Appli-
cation data. Functions defined through the tag library mechanism can be
accessed in the EL.
The JSP 2.0 specification also adds a mechanism by which page authors can
write actions using the JSP technology directly. This greatly increases the
ease with which action abstractions can be created.

• Web access layer for N-tier enterprise application architecture(s)

JavaServer Pages technology is an integral part of J2EE. The J2EE platform
brings Java technology to enterprise computing. One can now develop power-
ful middle-tier server applications that include a web site using JavaServer
Pages technology as a front end to Enterprise JavaBeans components in a
J2EE compliant environment.

Basic Concepts

This section introduces basic concepts that will be defined formally later in the
specification.

xxxii

JavaServer Pages 2.0 Specification

What Is a JSP Page?

A JSP page is a text-based document that describes how to process a request to
create a response. The description intermixes template data with dynamic actions
and leverages the Java 2 Platform. JSP technology supports a number of different
paradigms for authoring dynamic content. The key features of JavaServer Pages are:

• Standard directives

• Standard actions

• Scripting elements

• Tag Extension mechanism

• Template content

Web Applications

The concept of a web application is inherited from the servlet specification. A
web application can be composed of:

• Java Runtime Environment(s) running on the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML, and similar pages.

• Client-side Java Applets, JavaBeans components, and arbitrary Java class files

• Java Runtime Environment(s) running in client(s) (downloadable via the Plu-
gin and Java™ Web Start technology)

The JavaServer Pages specification inherits from the servlet specification the
concepts of web applications, ServletContexts, sessions, and requests and
responses. See the Java Servlet 2.4 specification for more details.

Components and Containers

JSP pages and servlet classes are collectively referred to as web components.
JSP pages are delivered to a container that provides the services indicated in the JSP
Component Contract.

xxxiii

JavaServer Pages 2.0 Specification

The separation of components from containers allows the reuse of
components, with quality-of-service features provided by the container.

Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation
phase, and a request phase. Translation is done once per page. The request phase is
done once per request.

The JSP page is translated to create a servlet class, the JSP page
implementation class, that is instantiated at request time. The instantiated JSP
page object handles requests and creates responses.

JSP pages may be translated prior to their use, providing the web application,
with a servlet class that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or
on-demand as the requests reach an untranslated JSP page.

Deployment Descriptor and Global Information

The JSP pages delivered in a web application may require some JSP configura-
tion information. This information is delivered through JSP-specific elements in the
web.xml deployment descriptor, rooted on the <jsp-config> element. Configuration
information includes <taglib> elements in mapping of tag libraries and <jsp-prop-

erty-group> elements used to provide properties of collections of JSP files. The
properties that can be indicated this way include page encoding information, EL
evaluation activation, automatic includes before and after pages, and whether script-
ing is enabled in a given page.

Role in the Java 2 Platform, Enterprise Edition

With a few exceptions, integration of JSP pages within the J2EE 1.4 platform is
inherited from the Servlet 2.4 specification since translation turns JSPs into servlets.

Users of JavaServer Pages

There are six classes of users that interact with JavaServer Pages technology.
This section describes each class of user, enumerates the technologies each must be
familiar with, and identifies which sections of this specification are most relevant to
each user class. The intent is to ensure that JavaServer Pages remains a practical and

xxxiv

JavaServer Pages 2.0 Specification

easy-to-use technology for each class of user, even as the language continues to
grow.

Page Authors

Page Authors are application component providers that use JavaServer Pages to
develop the presentation component of a web application. It is expected that they
will not make use of the scripting capabilities of JavaServer Pages, but rather limit
their use to standard and custom actions. Therefore, it is assumed that they know the
target language, such as HTML or XML, and basic XML concepts, but they need
not know Java at all.

The following sections are most relevant to this class of user:

• Chapter JSP.1, “Core Syntax and Semantics”, except for Section JSP.1.12,
“Scripting Elements” and Section JSP.1.14, “Tag Attribute Interpretation Se-
mantics”, which both talk about scripting.

• Chapter JSP.2, “Expression Language”

• Chapter JSP.3, “JSP Configuration”

• Chapter JSP.4, “Internationalization Issues”

• Chapter JSP.5, “Standard Actions”

• Chapter JSP.6, “JSP Documents”, except for sections that discuss declara-
tions, scriptlets, expressions, and request-time attributes.

• Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

• Chapter JSP.8, “Tag Files”.

• Appendices JSP.A, JSP.E, and JSP.F.

Advanced Page Authors

Like Page Authors, Advanced Page Authors are also application component
providers that use JavaServer Pages to develop the presentation component of a web
application. These authors have a better understanding of XML and also know Java.
Though they are recommended to avoid it where possible, these authors do have
scripting at their disposal and should be able to read and understand JSPs that make
use of scripting.

The following sections are most relevant to this class of user:

xxxv

JavaServer Pages 2.0 Specification

• Chapters JSP.1, JSP.2, JSP.3, JSP.4 and JSP.5.

• Chapter JSP.6, “JSP Documents”.

• Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved
Names” of Chapter JSP.9, “Scripting”.

• Section JSP.7.1.1, “Goals” and Section JSP.7.1.2, “Overview” of
Chapter JSP.7, “Tag Extensions”.

• Chapter JSP.8, “Tag Files”

• Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”

• Chapter JSP.12, “Core API”

• Appendices JSP.A, JSP.B, JSP.E, and JSP.F.

Tag Library Developers

Tag Library Developers are application component providers who write tag
libraries that provide increased functionality to Page Authors and Advanced Page
Authors. They have an advanced understanding of the target language, XML, and
Java.

The following sections are most relevant to this class of user:

• Chapters JSP.1, JSP.2, JSP.3, JSP.4 and JSP.5.

• Chapter JSP.6, “JSP Documents”.

• Section JSP.9.1.1, “Valid JSP Page” and Section JSP.9.1.2, “Reserved
Names” of Chapter JSP.9, “Scripting”.

• Chapter JSP.7, “Tag Extensions”

• Chapter JSP.8, “Tag Files”

• Section JSP.11.4, “Precompilation” of Chapter JSP.11, “JSP Container”

• Chapter JSP.12, “Core API” and Chapter JSP.13, “Tag Extension API”

• All Appendices.

Deployers

A deployer is an expert in a specific operational environment who is responsible
for configuring a web application for, and deploying the web application to, that
environment. The deployer does not need to understand the target language or Java,

xxxvi

JavaServer Pages 2.0 Specification

but must have an understanding of XML or use tools that provide the ability to read
deployment descriptors.

The following sections are most relevant to this class of user:

• Section JSP.1.1, “What Is a JSP Page” and Section JSP.1.2, “Web Applica-
tions” of Chapter JSP.1, “Core Syntax and Semantics”

• Chapter JSP.3, “JSP Configuration”

• Chapter JSP.4, “Internationalization Issues”

• Chapter JSP.11, “JSP Container”

• All Appendices.

Container Developers and Tool Vendors

Container Developers develop containers that host JavaServer Pages. Tool Ven-
dors write development tools to assist Page Authors, Advanced Page Authors, Tag
Library Developers, and Deployers. Both Container Developers and Tool Vendors
must know XML and Java, and must know all the requirements and technical details
of JavaServer Pages. Therefore, this entire specification is relevant to both classes of
user.

1-1JavaServer Pages 2.0 Specification

Part I

The next chapters form the core of the JSP specification. These chapters pro-
vide information for Page authors, Tag Library developers, deployers and Container
and Tool vendors.

The chapter of this part are

• Core Syntax and Semantics

• Expression Language

• Configuration Information

• Internationalization Issues

• Standard Actions

• JSP Documents

• Tag Extensions

• Tag Files

• Scripting

• XML Views

1-2

JavaServer Pages 2.0 Specification

1-3JavaServer Pages 2.0 Specification

C H A P T E R JSP.1
Core Syntax and Semantics

This chapter describes the core syntax and semantics for the JavaServer Pages
2.0 specification (JSP 2.0).

JSP.1.1 What Is a JSP Page

A JSP page is a textual document that describes how to create a response object
from a request object for a given protocol. The processing of the JSP page may
involve creating and/or using other objects.

A JSP page defines a JSP page implementation class that implements the
semantics of the JSP page. This class implements the javax.servlet.Servlet

interface (see Chapter JSP.11 for details). At request time a request intended for
the JSP page is delivered to the JSP page implementation object for processing.

HTTP is the default protocol for requests and responses. Additional request/
response protocols may be supported by JSP containers. The default request and
response objects are of type HttpServletRequest and HttpServletResponse

respectively.

JSP.1.1.1 Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management
and runtime support for JSP pages and servlet components. Requests sent to a JSP
page are delivered by the JSP container to the appropriate JSP page implementation
object. The term web container is synonymous with JSP container.

A web component is either a servlet or a JSP page. The servlet element in a
web.xml deployment descriptor is used to describe both types of web components.
JSP page components are defined implicitly in the deployment descriptor through

CORE SYNTAX AND SEMANTICS1-4

JavaServer Pages 2.0 Specification

the use of an implicit .jsp extension mapping, or explicitly through the use of a
jsp-group element.

JSP.1.1.2 Generating HTML

A traditional application domain of the JSP technology is HTML content. The
JSP specification supports well this use through a syntax that is friendly to HTML
and XML although it is not HTML-specific; for instance, HTML comments are
treated no differently than other HTML content. The JSP Standard Tag Library has
specific support for HTML though some specific custom actions.

JSP.1.1.3 Generating XML

An increasingly important application domain for JSP technology is dynamic
XML content using formats like XHTML, SVG and the Open Office format, and in
applications like content publishing, data representation and Web Services. The
basic JSP machinery (JSP syntax) can be used to generate XML content, but it is
also possible to tag a JSP page as a JSP document and get additional benefits.

A JSP document is an XML document; this means that a JSP document is a
well-formed, structured document and that this will be validated by the JSP
container. Additionally, this structure will be available to the JSP validation
machinery, the TagLibraryValidators. A JSP document is a namespace-aware
XML document, with namespaces reflecting the structure of both content and
custom actions and with some additional care, a JSP page can reflect quite
accurately the structure of the resulting content. A JSP document can also use
machinery like entity definitions.

The JSP 1.2 specification made a stronger distinction between JSP documents
and non-XML JSP pages. For instance standard actions like <jsp:expression>
were only available in JSP documents. The difference proved to be confusing and
distracting and the distinction has been relaxed in JSP 2.0 to facilitate the
transition from the JSP syntax to XML syntax.

JSP.1.1.4 Translation and Execution Phases

A JSP container manages two phases of a JSP page’s lifecycle. In the transla-
tion phase, the container validates the syntactic correctness of the JSP pages and tag
files and determines a JSP page implementation class that corresponds to the JSP
page. In the execution phase the container manages one or more instances of this
class in response to requests and other events.

What Is a JSP Page 1-5

JavaServer Pages 2.0 Specification

During the translation phase the container locates or creates the JSP page
implementation class that corresponds to a given JSP page. This process is
determined by the semantics of the JSP page. The container interprets the standard
directives and actions, and the custom actions referencing tag libraries used in the
page. A tag library may optionally provide a validation method acting on the
XML View of a JSP page, see below, to validate that a JSP page is correctly using
the library.

A JSP container has flexibility in the details of the JSP page implementation
class that can be used to address quality-of-service--most notably performance--
issues.

During the execution phase the JSP container delivers events to the JSP page
implementation object. The container is responsible for instantiating request and
response objects and invoking the appropriate JSP page implementation object.
Upon completion of processing, the response object is received by the container
for communication to the client. The details of the contract between the JSP page
implementation class and the JSP container are described in Chapter JSP.11.

The translation of a JSP source page into its implementation class can occur at
any time between initial deployment of the JSP page into the JSP container and
the receipt and processing of a client request for the target JSP page.
Section JSP.1.1.9 describes how to perform the translation phase ahead of
deployment.

JSP.1.1.5 Validating JSP pages

All JSP pages, regardless of whether they are written in the traditional JSP syn-
tax or the XML syntax of JSP documents have an equivalent XML document, the
XML view of a JSP page, that is presented to tag library validators in the translation
phase for validation.

The structure of the custom actions in a JSP page is always exposed in the
XML view. This means that a tag library validator can check that, for instance,
some custom actions are only used within others.

The structure of the content used in a JSP page is exposed in greater or lesser
detail depending on whether the XML syntax or the traditional JSP syntax is used.
When using XML syntax a tag library validator can use that extra structure to, for
example, check that some actions are only used with some content, or within some
content, and, using knowledge of the semantics of the custom actions, make
assertions on the generated dynamic content.

CORE SYNTAX AND SEMANTICS1-6

JavaServer Pages 2.0 Specification

JSP.1.1.6 Events in JSP Pages

A JSP page may indicate how some events are to be handled.
As of JSP 1.2 only init and destroy events can be described in the JSP page.

When the first request is delivered to a JSP page, a jspInit() method, if present, will
be called to prepare the page. Similarly, a JSP container invokes a JSP’s jspDe-

stroy() method to reclaim the resources used by the JSP page at any time when a
request is not being serviced. This is the same life-cycle as for servlets.

JSP.1.1.7 JSP Configuration Information

JSP pages may be extended with configuration information that is delivered in
the JSP configuration portion of the web.xml deployment description of the web
application. The JSP configuration information includes interpretation for the tag
libraries used in the JSP files and different property information for groups of JSP
files. The property information includes: page encoding information, whether the
EL evaluation and the scripting machinery is enabled, and prelude and coda auto-
matic inclusions. The JSP configuration information can also be used to indicate that
some resources in the web application are JSP files even if they do not conform to
the default .jsp extension, and to modify the default interpretation for .jspx.

JSP.1.1.8 Naming Conventions for JSP Files

A JSP page is packaged as one or more JSP files, often in a web application, and
delivered to a tool like a JSP container, a J2EE container, or an IDE. A complete JSP
page may be contained in a single file. In other cases, the top file will include other
files that contain complete JSP pages, or included segments of pages.

It is common for tools to need to differentiate JSP files from other files. In
some cases, the tools also need to differentiate between top JSP files and included
segments. For example, a segment may not be a legal JSP page and may not
compile properly. Determining the type of file is also very useful from a
documentation and maintenance point of view, as people familiar with the .c and
.h convention in the C language know.

By default the extension .jsp means a top-level JSP file. We recommend, but
do not mandate, to differentiate between top-level JSP files (invoked directly by
the client or dynamically included by another page or servlet) and statically
included segments so that:

What Is a JSP Page 1-7

JavaServer Pages 2.0 Specification

• The .jsp extension is used only for files corresponding to top level JSP files,
forming a JSP page when processed.

• Statically included segments use any other extension. As included segments
were called ‘JSP fragments’ in past versions of this specification, the extension
.jspf was offered as a suggestion. This extension is still suggested for consis-
tency reasons, despite that they are now called ‘jsp segments’.

JSP documents, that is, JSP pages that are delivered as XML documents, use
the extension .jspx by default.

The jsp-property-group element of web.xml can be used to indicate that some
group of files, perhaps not using either of the extensions above, are JSP pages, and
can also be used to indicate which ones are delivered as XML documents.

JSP.1.1.9 Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment
information during development (a JSP page can also be compiled at deployment
time). In this way JSP page authoring tools and JSP tag libraries may be used for
authoring servlets. The benefits of this approach include:

• Removal of the start-up lag that occurs when a container must translate a JSP
page upon receipt of the first request.

• Reduction of the footprint needed to run a JSP container, as the Java compiler
is not needed.

Compilation of a JSP page in the context of a web application provides
resolution of relative URL specifications in include directives and elsewhere, tag
library references, and translation-time actions used in custom actions.

A JSP page can also be compiled at deployment time.

JSP.1.1.9.1 JSP Page Packaging

When a JSP page implementation class depends on support classes in addition
to the JSP 2.0 and Servlet 2.4 classes, the support classes are included in the pack-
aged WAR, as defined in the Servlet 2.4 specification, for portability across JSP con-
tainers.

Appendix JSP.A contains two examples of JSP pages packaged in WARs:

1. A JSP page delivered in source form (the most common case).

CORE SYNTAX AND SEMANTICS1-8

JavaServer Pages 2.0 Specification

2. A JSP page translated into an implementation class plus deployment informa-
tion. The deployment information indicates support classes needed and the
mapping between the original URL path to the JSP page and the URL for the
JSP page implementation class for that page.

JSP.1.1.10 Debugging JSP Pages

In the past debugging tools provided by development environments have lacked
a standard format for conveying source map information allowing the debugger of
one vendor to be used with the JSP container of another. As of JSP 2.0, containers
must support JSR-045 (“Debugging Support for Other Languages”). Details can be
found in Section JSP.11.5, “Debugging Requirements”.

JSP.1.2 Web Applications

A web application is a collection of resources that are available at designated
URLs. A web application is made up of some of the following:

• Java runtime environment(s) running in the server (required)

• JSP page(s) that handle requests and generate dynamic content

• Servlet(s) that handle requests and generate dynamic content

• Server-side JavaBeans components that encapsulate behavior and state

• Static HTML, DHTML, XHTML, XML and similar pages.

• Resource files used by Java classes.

• Client-side Java Applets, JavaBeans components, and Java class files

• Java runtime environment(s) (downloadable via the Plugin and Java Web
Start) running in client(s)

Web applications are described in more detail in the Servlet 2.4 specification.
A web application contains a deployment descriptor web.xml that contains

information about the JSP pages, servlets, and other resources used in the web
application. The deployment descriptor is described in detail in the Servlet 2.4
specification.

JSP 2.0 requires that these resources be implicitly associated with and
accessible through a unique ServletContext instance available as the implicit appli-

cation object (see Section JSP.1.8).

Web Applications 1-9

JavaServer Pages 2.0 Specification

The application to which a JSP page belongs is reflected in the application

object, and has impact on the semantics of the following elements:

• The include directive (see Section JSP.1.10.3).

• The taglib directive (see Section JSP.1.10.2).

• The jsp:include action element (see Section JSP.5.4).

• The jsp:forward action (see Section JSP.5.5).

JSP 2.0 supports portable packaging and deployment of web applications
through the Servlet 2.4 specification. The JavaServer Pages specification inherits
from the servlet specification the concepts of applications, ServletContexts,
Sessions, Requests and Responses.

JSP.1.2.1 Relative URL Specifications

Elements may use relative URL specifications, called URI paths, in the Servlet
2.4 specification. These paths are as described in RFC 2396. We refer to the path
part of that specification, not the scheme, nor authority parts. Some examples are:

• A context-relative path is a path that starts with a slash (/). It is to be interpreted
as relative to the application to which the JSP page or tag file belongs. That is,
its ServletContext object provides the base context URL.

• A page relative path is a path that does not start with a slash (/). It is to be in-
terpreted as relative to the current JSP page, or the current JSP file or tag file,
depending on where the path is being used. For an include directive (see
Section JSP.1.10.3) where the path is used in a file attribute, the interpretation
is relative to the JSP file or tag file. For a jsp:include action (see
Section JSP.5.4) where the path is used in a page attribute, the interpretation is
relative to the JSP page. In both cases the current page or file is denoted by
some path starting with / that is then modified by the new specification to pro-
duce a path starting with /. The new path is interpreted through the Servlet-

Context object. See Section JSP.1.10.5 for exact details on this interpretation.

The JSP specification uniformly interprets paths in the context of the web
container where the JSP page is deployed. The specification goes through a
mapping translation. The semantics outlined here apply to the translation-time
phase, and to the request-time phase.

CORE SYNTAX AND SEMANTICS1-10

JavaServer Pages 2.0 Specification

JSP.1.3 Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

JSP.1.3.1 Elements and Template Data

A JSP page has elements and template data. An element is an instance of an ele-
ment type known to the JSP container. Template data is everything else; that is, any-
thing that the JSP translator does not know about.

The type of an element describes its syntax and its semantics. If the element
has attributes, the type describes the attribute names, their valid types, and their
interpretation. If the element defines objects, the semantics includes what objects
it defines and their types.

JSP.1.3.2 Element Syntax

There are three types of elements: directive elements, scripting elements, and
action elements.

Directives

Directives provide global information that is conceptually valid independent
of any specific request received by the JSP page. They provide information for
the translation phase.
Directive elements have a syntax of the form <%@ directive...%>.

Actions

Actions provide information for the request processing phase. The interpreta-
tion of an action may, and often will, depend on the details of the specific
request received by the JSP page. An Actions can either be standard (that is.
defined in this specification), or custom (that is, provided via the portable tag
extension mechanism).
Action elements follow the syntax of an XML element. They have a start tag
including the element name, and may have attributes, an optional body, and a
matching end tag, or may be an empty tag, possibly with attributes:

<mytag attr1=”attribute value”...>body</mytag>

And:

Syntactic Elements of a JSP Page 1-11

JavaServer Pages 2.0 Specification

<mytag attr1=”attribute value”.../>
<mytag attr1=”attribute value” ...></mytag>

An element has an element type describing its tag name, its valid attributes
and its semantics. We refer to the type by its tag name.
JSP tags are case-sensitive, as in XML and XHTML.
An action may create objects and may make them available to the scripting
elements through scripting-specific variables.

Scripting Elements

Scripting elements provide “glue” around template text and actions.
JSP 2.0 has a simple Expression Language (EL) that can be used to simplify
accessing data from different sources. EL expressions can be used in JSP stan-
dard and custom actions and template data. EL expressions use the syntax
${expr}; For example:

<mytag attr1=”${bean.property}”.../>
${map[entry]}
<lib:myAction>${3+counter}</lib:myAction>

Chapter JSP.2 provides more details on the EL.

JSP 2.0 retains the three language-based types of scripting elements: declara-
tions, scriptlets, and expressions. Declarations follow the syntax <%! ... %>.
Scriptlets follow the syntax <% ... %>. Expressions follow the syntax
<%= ... %>.

JSP.1.3.3 Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start
and end in the same file. The start tag cannot be on one file while the end tag is in
another.

The same rule applies to elements in the alternate syntax. For example, a
scriptlet has the syntax <% scriptlet %>. Both the opening <% characters and the
closing %> characters must be in the same physical file.

A scripting language may also impose constraints on the placement of start
and end tags relative to specific scripting constructs. For example, Chapter 9
shows that Java language blocks cannot separate a start and an end tag. See
Section JSP.9.4 for details.

CORE SYNTAX AND SEMANTICS1-12

JavaServer Pages 2.0 Specification

JSP.1.3.4 Empty Elements

Following the XML specification, an element described using an empty tag is
indistinguishable from one using a start tag, an empty body, and an end tag

As examples, the following are all empty tags:

<x:foo></x:foo>
<x:foo />
<x:foo/>
<x:foo><%-- any comment --%></x:foo>

While the following are all non-empty tags:

<foo> </foo>
<foo><%= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>
<foo><!-- a comment --></foo>

JSP.1.3.5 Attribute Values

Following the XML specification, attribute values always appear quoted. Either
single or double quotes can be used to reduce the need for escaping quotes; the quo-
tation conventions available are described in Section JSP.1.6. There are two types of
attribute values, literals and request-time expressions (Section JSP.1.14.1), but the
quotation rules are the same.

JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements

Until JSP 2.0, tag handlers could be passed input two ways: through attribute
values and through the element body. Attribute values were always evaluated once
(if they were specified as an expression) and the result was passed to the tag
handler. The body could contain scripting elements and action elements and be
evaluated zero or more times on demand by the tag handler.

As of JSP 2.0, page authors can provide input in new ways using the
<jsp:attribute> standard action element. Based on the configuration of the action
being invoked, the body of the element either specifies a value that is evaluated
once, or it specifies a “JSP fragment,” which represents the body in a form that
makes it possible for a tag handler to evaluate it as many times as needed. The
<jsp:attribute> action must only be used to specify an attribute value for standard
or custom actions. A translation error must occur if it is used in any other context,
for example to specify the value of template text that looks like an XML element.

Syntactic Elements of a JSP Page 1-13

JavaServer Pages 2.0 Specification

It is illegal JSP syntax, which must result in a translation error, to use both an
XML element attribute and a <jsp:attribute> standard action to pass the value of
the same attribute. See Section JSP.5.10 for more details on the <jsp:attribute>

standard action.
The following example uses an XML element attribute to define the value of

the param1 attribute, and uses an attribute standard action to define the value of
the param2 attribute. In this example, the value of param2 comes from the result
of a custom action invocation.

<mytag:paramTag param1=”value1”>
<jsp:attribute name=”param2”>

<mymath:add x=”2” y=”2”/>
</jsp:attribute>

</mytag:paramTag>

If a page author wishes to pass both an attribute standard action and a tag
body, the <jsp:body> standard action must be used to specify the body. A
translation error will result if the custom action invocation has <jsp:attribute>

elements but does not define the body using a <jsp:body> element. See
Section JSP.5.11 for more details on the <jsp:body> standard action.

The following example shows two equivalent tag invocations to the
hypothetical <mytag:formatBody> custom action. The first invocation uses an
XML element attribute to pass the values of the color and size attributes. The
second example uses an attribute standard action to pass the value of the color

attribute. Both examples have tag body containing simply the words “Template
Text”.

<mytag:tagWithBody color=”blue” size=”12”>
Template Text

</mytag:tagWithBody>

<mytag:tagWithBody size=”12”>
<jsp:attribute name=”color”>blue</jsp:attribute>
<jsp:body>

Template Text
</jsp:body>

</mytag:tagWithBody>

<jsp:attribute> can be used with the <jsp:element> standard action to generate
dynamic content in a well structured way. The example below generates an
HTML head of some type unknown at page authoring time:

CORE SYNTAX AND SEMANTICS1-14

JavaServer Pages 2.0 Specification

<jsp:element name=”H${headLevel}”>
<jsp:attribute name=”size”>${headSize}</jsp:attribute>
<jsp:body>${headText}<jsp:body>

</jsp:element>

JSP.1.3.7 Valid Names for Actions and Attributes

The names for actions must follow the XML convention (i.e. must be an NMTO-

KEN as indicated in the XML 1.0 specification). The names for attributes must fol-
low the conventions described in the JavaBeans specification.

Attribute names that start with jsp, _jsp, java, or sun are reserved in this
specification.

JSP.1.3.8 White Space

In HTML and XML white space is usually not significant, but there are excep-
tions. For example, an XML file may start with the characters <?xml, and, when it
does, it must do so with no leading whitespace characters.

This specification follows the whitespace behavior defined for XML. White
space within the body text of a document is not significant, but is preserved.

Next are two examples of JSP code with their associated output. Note that
directives generate no data and apply globally to the JSP page.

The result is

Table JSP.1-1 Example 1 - Input

LineNo Source Text

1 <?xml version=”1.0” ?>

2 <%@ page buffer=”8kb” %>

3 The rest of the document goes here

Table JSP.1-2 Example 1 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2
3 The rest of the document goes here

Syntactic Elements of a JSP Page 1-15

JavaServer Pages 2.0 Specification

The next two tables show another example, with input and output.,

The result is

JSP.1.3.9 JSP Documents

A JSP page is usually passed directly to a JSP container. A JSP Document is a
JSP page that is also an XML document. When a JSP document is encountered by
the JSP container, it is interpreted as an XML document first and after that as a JSP
page. Among the consequences of this are:

• The document must be well-formed

• Validation, if indicated

• Entity resolution will apply, if indicated

• <% style syntax cannot be used

JSP documents are often a good match for the generation of dynamic XML
content as they can preserve much of the structure of the generated document.

The default convention for JSP documents is .jspx. There are configuration
elements that can be used to indicate that a specific file is a JSP document.

See Chapter JSP.6 for more details on JSP documents, and Chapter 3 for more
details on configuration.

Table JSP.1-3 Example 2 - Input

LineNo Source Text

1 <% response.setContentType(“....”);

2 whatever... %><?xml version=”1.0” ?>

3 <%@ page buffer=”8kb” %>

4 The rest of the document goes here

Table JSP.1-4 Example 2 - Output

LineNo Output Text

1 <?xml version=”1.0” ?>

2
3 The rest of the document goes here

CORE SYNTAX AND SEMANTICS1-16

JavaServer Pages 2.0 Specification

JSP.1.3.10 JSP Syntax Grammar

This section presents a simple EBNF grammar for the JSP syntax. The grammar
is intended to provide a concise syntax overview and to resolve any syntax ambigu-
ities present in this specification. Other sections may apply further restrictions to this
syntax, for example to restrict what represents a valid attribute value for a page
directive. In all other cases the grammar takes precedence in resolving syntax ques-
tions.

The notation for this grammar is identical to that described by Chapter 6 of
the XML 1.0 specification, available at the following URL:

http://www.w3c.org/TR/2000/REC-xml-20001006#sec-notation

In addition, the following notes and rules apply:

• The root production for a JSP page is JSPPage.

• The prefix XML:: is used to refer to an EBNF definition in the XML 1.0 speci-
fication. Refer to http://www.w3.org/TR/REC-xml.

• Where applicable, to resolve grammar ambiguities, the first matching produc-
tion must always be followed. This is commonly known as the “greedy” algo-
rithm.

• If the <TRANSLATION_ERROR> production is followed, the page is invalid,

and the result will be a translation error.

• Many productions make use of XML-style attributes. These attributes can ap-
pear in any order, separated from each other by whitespace, but no attribute
can be repeated more than once. To make these XML-style attribute specifica-
tions more concise and easier to read, the syntax ATTR[attrset] is used in the
EBNF to define a set of XML attributes that are recognized in a particular pro-
duction.

Within the square brackets (attrset) is listed a comma-separated list of case-
sensitive attribute names that are valid. Each attribute name represents a sin-
gle XML attribute. If the attribute name is prefixed with an =, the production
Attribute (defined below) must be matched (either a rtexprvalue or a static
value is accepted). If not, the production NonRTAttribute must be matched
(only static values are accepted). If the attribute name is prefixed with a !, the
attribute is required and must appear in order for this production to be
matched. If an attribute that matches the Attribute production with a name not
listed appears adjacent to any of the other attributes, the production is not
matched.

Syntactic Elements of a JSP Page 1-17

JavaServer Pages 2.0 Specification

For example, consider a production that contains ATTR[!name, =value,
=!repeat]. This production is matched if and only if all of the following hold
true:

• The name attribute appears exactly once and matches the NonRTAttribute
production.

• The value attribute appears at most once. If it appears, the Attribute produc-
tion must be matched.

• The repeat attribute appears exactly once and matches the Attribute produc-
tion.

• There must be no other attributes aside from name, value, or repeat.

For example, the following sample strings match the above:
• name=”somename” value=”somevalue” repeat=”2”
• repeat=”${ x + y }” name=”othername”

JSP.1.3.10.1 EBNF Grammar for JSP Syntax

JSPPage ::= Body

JSPTagDef ::= Body

Body ::= AllBody | ScriptlessBody
[vc: ScriptingEnabled]
[vc: ScriptlessBody]

AllBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ DeclarationBody)
| (‘<jsp:declaration’ XMLDeclarationBody)
| (‘<%=’ ExpressionBody)
| (‘<jsp:expression’ XMLExpressionBody)
| (‘<%’ ScriptletBody)
| (‘<jsp:scriptlet’ XMLScriptletBody)
| (‘${‘ ELExpressionBody)
| (‘<jsp:text’ XMLTemplateText)
| (‘<jsp:’ StandardAction)
| (‘</’ ExtraClosingTag)
| (‘<‘ CustomAction

CustomActionBody)
| TemplateText

)*

CORE SYNTAX AND SEMANTICS1-18

JavaServer Pages 2.0 Specification

ScriptlessBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ <TRANSLATION_ERROR>)
| (‘<jsp:declaration’

<TRANSLATION_ERROR>)
| (‘<%=’ <TRANSLATION_ERROR>)
| (‘<jsp:expression’

<TRANSLATION_ERROR>)
| (‘<%’ <TRANSLATION_ERROR>)
| (‘<jsp:scriptlet’

<TRANSLATION_ERROR>)
| (‘${‘ ELExpressionBody)
| (‘<jsp:text’ XMLTemplateText)
| (‘<jsp:’ StandardAction)
((‘</’ ExtraClosingTag)
| (‘<‘ CustomAction

CustomActionBody)
| TemplateText

)*
[vc: ELEnabled]

TemplateTextBody ::= ((‘<%--’ JSPCommentBody)
| (‘<%@’ DirectiveBody)
| (‘<jsp:directive.’ XMLDirectiveBody)
| (‘<%!’ <TRANSLATION_ERROR>)
| (‘<jsp:declaration’

<TRANSLATION_ERROR>)
| (‘<%=’ <TRANSLATION_ERROR>)
| (‘<jsp:expression’

<TRANSLATION_ERROR>)
| (‘<%’ <TRANSLATION_ERROR>)
| (‘<jsp:scriptlet’

<TRANSLATION_ERROR>)
| (‘${‘ <TRANSLATION_ERROR>)
| (‘<jsp:text’ <TRANSLATION_ERROR>)
| (‘<jsp:’ <TRANSLATION_ERROR>)
| (‘<‘ CustomAction

<TRANSLATION_ERROR>)
| TemplateText

)*
[vc: ELEnabled]

Syntactic Elements of a JSP Page 1-19

JavaServer Pages 2.0 Specification

JSPCommentBody ::= (Char* - (Char* ‘--%>’)) ‘--%>’
| <TRANSLATION_ERROR>

DirectiveBody ::= JSPDirectiveBody | TagDefDirectiveBody
[vc: TagFileSpecificDirectives]

XMLDirectiveBody ::= XMLJSPDirectiveBody | XMLTagDefDirectiveBody
[vc: TagFileSpecificXMLDirectives]

JSPDirectiveBody ::= S?
((‘page’ S PageDirectiveAttrList)

| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)

)
S? ‘%>’

| <TRANSLATION_ERROR>

XMLJSPDirectiveBody::= S?
((‘page’ S PageDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

| (‘include’ S IncludeDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
)

| <TRANSLATION_ERROR>

TagDefDirectiveBody::= S?
((‘tag’ S TagDirectiveAttrList)

| (‘taglib’ S TagLibDirectiveAttrList)
| (‘include’ S IncludeDirectiveAttrList)
| (‘attribute’ S AttributeDirectiveAttrList)
| (‘variable’ S VariableDirectiveAttrList)

)
S? ‘%>’

| <TRANSLATION_ERROR>

CORE SYNTAX AND SEMANTICS1-20

JavaServer Pages 2.0 Specification

XMLTagDefDirectiveBody::= ((‘tag’ S TagDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
| (‘include’ S IncludeDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

| (‘attribute’ S AttributeDirectiveAttrList S?
(‘/>’ | (‘>’ S? ETag))

)
| (‘variable’ S VariableDirectiveAttrList S?

(‘/>’ | (‘>’ S? ETag))
)

)
| <TRANSLATION_ERROR>

PageDirectiveAttrList::= ATTR[language, extends, import, session,
buffer, autoFlush, isThreadSafe,
info, errorPage, isErrorPage,
contentType, pageEncoding,
isELIgnored]

[vc: PageDirectiveUniqueAttr]

TagLibDirectiveAttrList::= ATTR[!uri, !prefix]
| ATTR[!tagdir, !prefix]
[vc: TagLibDirectiveUniquePrefix]

IncludeDirectiveAttrList::=ATTR[!file]

TagDirectiveAttrList ::= ATTR[display-name, body-content,
dynamic-attributes, small-icon, large-icon,
description, example, language,
import, pageEncoding, isELIgnored]

[vc: TagDirectiveUniqueAttr]

AttributeDirectiveAttrList::=ATTR[!name, required, fragment, rtexprvalue,
type, description]

[vc: UniqueAttributeName]

VariableDirectiveAttrList::= ATTR[!name-given, variable-class,
scope, declare, description]

| ATTR[!name-from-attribute, !alias,
variable-class,
scope, declare, description]

[vc: UniqueVariableName]

Syntactic Elements of a JSP Page 1-21

JavaServer Pages 2.0 Specification

DeclarationBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>

XMLDeclarationBody::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<‘)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

ExpressionBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

XMLExpressionBody::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

ELExpressionBody ::= ELExpression ‘}’
| <TRANSLATION_ERROR>

ELExpression ::= [See Section JSP.2.9, production Expression]

ScriptletBody ::= (Char* - (Char* ‘%>’)) ‘%>’
| <TRANSLATION_ERROR>

XMLScriptletBody ::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* ‘<’)) CDSect?)*
ETag

)
| <TRANSLATION_ERROR>

CORE SYNTAX AND SEMANTICS1-22

JavaServer Pages 2.0 Specification

StandardAction ::= (‘useBean’ StdActionContent)
| (‘setProperty’ StdActionContent)
| (‘getProperty’ StdActionContent)
| (‘include’ StdActionContent)
| (‘forward’ StdActionContent)
| (‘plugin’ StdActionContent)
| (‘invoke’ StdActionContent)
| (‘doBody’ StdActionContent)
| (‘element’ StdActionContent)
| (‘output’ StdActionContent)
| <TRANSLATION_ERROR>
[vc: TagFileSpecificActions]

StdActionContent ::= Attributes StdActionBody
[vc: StdActionAttributesValid]

StdActionBody ::= EmptyBody
| OptionalBody
| ParamBody
| PluginBody
[vc: StdActionBodyMatch]

EmptyBody ::= ‘/>’
| (‘>’ ETag)
| (‘>’ S? ‘<jsp:attribute’ NamedAttributes ETag)

TagDependentActionBody ::= JspAttributeAndBody
| (‘>’ TagDependentBody ETag)

TagDependentBody ::= Char* - (Char* ETag)

JspAttributeAndBody::= (‘>’ S? (‘<jsp:attribute’NamedAttributes)?
‘<jsp:body’
(JspBodyBody |<TRANSLATION_ERROR>)
S? ETag

)

ActionBody ::= JspAttributeAndBody
| (‘>’ Body ETag)

ScriptlessActionBody::= JspAttributeAndBody
| (‘>’ ScriptlessBody ETag)

OptionalBody ::= EmptyBody | ActionBody

Syntactic Elements of a JSP Page 1-23

JavaServer Pages 2.0 Specification

ScriptlessOptionalBody::=EmptyBody | ScriptlessActionBody

TagDependentOptionalBody::= EmptyBody | TagDependentActionBody

ParamBody ::= EmptyBody
| (‘>’ S? (‘<jsp:attribute’ NamedAttributes)?

‘<jsp:body’
(JspBodyParam | <TRANSLATION_ERROR>)
S? ETag

)
| (S? ‘>’ Param* ETag)

PluginBody ::= EmptyBody
| (‘>’ S? (‘<jsp:attribute’ NamedAttributes)?

‘<jsp:body’
(JspBodyPluginTags

| <TRANSLATION_ERROR>
)
S? ETag

)
| (‘>’ S? PluginTags ETag)

NamedAttributes ::= AttributeBody S? (‘<jsp:attribute’ AttributeBody S?)*

AttributeBody ::= ATTR[!name, trim] S?
(‘/>’

| ‘></jsp:attribute>’
| ‘>’ AttributeBodyBody ‘</jsp:attribute>’
| <TRANSLATION_ERROR>

)

AttributeBodyBody ::= AllBody
| ScriptlessBody
| TemplateTextBody
[vc: AttributeBodyMatch]

JspBodyBody ::= (S? JspBodyEmptyBody)
| (S? ‘>’ (JspBodyBodyContent - ‘’) ‘</jsp:body>’)

JspBodyBodyContent::= ScriptlessBody | Body | TagDependentBody
[vc: JspBodyBodyContent]

JspBodyEmptyBody ::= ‘/>’
| ‘></jsp:body>’
| <TRANSLATION_ERROR>

CORE SYNTAX AND SEMANTICS1-24

JavaServer Pages 2.0 Specification

JspBodyParam ::= S? ‘>’ S? Param* ‘</jsp:body>’

JspBodyPluginTags ::= S? ‘>’ S? PluginTags ‘</jsp:body>’

PluginTags ::= (‘<jsp:params’ Params S?)?
(‘<jsp:fallback’ Fallback S?)?

Params ::= ‘>’ S?
((‘<jsp:body>’

((S? Param+ S? ‘</jsp:body>’)
| <TRANSLATION_ERROR>

)
)

| Param+
)
’</jsp:params>’

Fallback ::= ’/>’
| (‘>’ S? ‘<jsp:body>’

((S?
(Char* - (Char* ‘</jsp:body>’))
‘</jsp:body>’ S?

)
| <TRANSLATION_ERROR>

)
‘</jsp:fallback>’

)
| (’>’

(Char* - (Char* ’</jsp:fallback>’))
’</jsp:fallback>’

)

Param ::= ’<jsp:param’ StdActionContent

Attributes ::= (S Attribute)* S?
[vc: UniqueAttSpec]

CustomAction ::= TagPrefix ’:’ CustomActionName
[vc: CustomActionMatchesAndValid]

TagPrefix ::= Name

CustomActionName ::= Name

Syntactic Elements of a JSP Page 1-25

JavaServer Pages 2.0 Specification

CustomActionBody ::= (Attributes CustomActionEnd)
| <TRANSLATION_ERROR>

CustomActionEnd ::= CustomActionTagDependent
| CustomActionJSPContent
| CustomActionScriptlessContent

CustomActionTagDependent::= TagDependentOptionalBody
[vc: CustomActionTagDependentMatch]

CustomActionJSPContent::= OptionalBody
[vc: CustomActionJSPContentMatch]

CustomActionScriptlessContent::= ScriptlessOptionalBody
[vc: CustomActionScriptlessContentMatch]

TemplateText ::= (‘<‘ | ‘${‘)
| (TemplateChar* - (TemplateChar* (‘<‘ | ‘${‘)))

TemplateChar ::= ‘\$’
| ‘<\%’
| Char
[vc : QuotedDollarMatched]

XMLTemplateText ::= (S? ‘/>’)
| (S? ‘>’

((Char* - (Char* (‘<’ | ‘${‘)))
(‘${‘ ELExpressionBody)?
CDSect?

)* ETag
)

| <TRANSLATION_ERROR>
[vc: ELEnabled]

ExtraClosingTag ::= ETag
[vc: ExtraClosingTagMatch]

ETag ::= ‘</’ TagPrefix ‘:’ Name S? ‘>’
[vc: ETagMatch]

CORE SYNTAX AND SEMANTICS1-26

JavaServer Pages 2.0 Specification

Attribute ::= Name Eq
((‘”<%=’ RTAttributeValueDouble)

| (“‘<%=” RTAttributeValueSingle)
| (‘”’ AttributeValueDouble)
| (“‘” AttributeValueSingle)

)

NonRTAttribute ::= Name Eq
((‘”’ AttributeValueDouble)

| (“‘” AttributeValueSingle)
)

AnyAttributeValue ::= AttributeValue | RTAttributeValue

AttributeValue ::= AttributeValueDouble | AttributeValueSingle

RTAttributeValue ::= RTAttributeValueDouble | RTAttributeValueSingle

AttributeValueDouble::= (QuotedChar - ‘”’)*
(‘”’ | <TRANSLATION_ERROR>)

AttributeValueSingle ::= (QuotedChar - “‘”)*
(“‘” | <TRANSLATION_ERROR>)

RTAttributeValueDouble::= ((QuotedChar - ‘”’)* -
((QuotedChar - ’"’)* ’%>’)

)
(’%>"’ | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

RTAttributeValueSingle::= ((QuotedChar - “‘”)* -
((QuotedChar - “‘”)* ’%>’)

)
("%>’" | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

Name ::= XML::Name

Char ::= XML::Char

Syntactic Elements of a JSP Page 1-27

JavaServer Pages 2.0 Specification

QuotedChar ::= ’'’
| ’"’
| ’\\’
| ‘\”’
| "\’"
| ‘\$’
| (‘${‘ ELExpressionBody)
| Char
[vc: QuotedDollarMatched]

S ::= XML::S

Eq ::= XML::Eq

CDSect ::= XML::CDSect

JSP.1.3.10.2 Validity Constraints

The following validity constraints are referenced in the above grammar using the syn-
tax [vc: ValidityConstraint], and must be followed:

• ScriptingEnabled - The ScriptlessBody production must be followed if scripting
is disabled for this translation unit. See the scripting-invalid JSP Configuration
element (Section JSP.3.3.3).

• ScriptlessBody - The AllBody production cannot be followed if one of our par-
ent nodes in the parse tree is a ScriptlessBody production. That is, once we
have followed the ScriptlessBody production, until that production is complete
we cannot choose the AllBody production.

• ELEnabled - The token ${ is not followed if expressions are disabled for this
translation unit. See the isELIgnored page and tag directive
(Section JSP.1.10.1 and Section JSP.8.5.1 respectively) and the el-ignored

JSP Configuration element (Section JSP.3.3.2).

• TagFileSpecificDirectives - The JSPDirectiveBody production must be followed
if the root production is JSPPage (i.e. this is a JSP page). The TagDefDirec-

tiveBody production must be followed if the root production is JSPTagDef (i.e.
this is a tag file).

• TagFileSpecificXMLDirectives - The XMLJSPDirectiveBody production must be
followed if the root production is JSPPage (i.e. this is a JSP page). The XMLT-

agDefDirectiveBody production must be followed if the root production is
JSPTagDef (i.e. this is a tag file).

CORE SYNTAX AND SEMANTICS1-28

JavaServer Pages 2.0 Specification

• PageDirectiveUniqueAttr - A translation error will result if there is more than
one occurrence of any attribute defined by this directive in a given translation
unit, and if the value of the attribute is different than the previous occurrence.
No translation error results if the value is identical to the previous occurrence.
In addition, the import and pageEncoding attributes are excluded from this
constraint (see Section JSP.1.10.1).

• TagLibDirectiveUniquePrefix - A translation error will result if the prefix At-

tributeValue has already previously been encountered as a potential TagPrefix

in this translation unit.

• TagDirectiveUniqueAttr - A translation error will result if the prefix of this tag
directive is already defined in the current scope, and if that prefix is bound to a
namespace other than that specified by the uri or tagdir attribute.

• UniqueAttributeName - A translation error will result if there are two or more
attribute directives with the same value for the name attribute in the same
translation unit. A translation error will result if there is a variable directive
with a name-given attribute equal to the value of the name attribute of an at-

tribute directive in the same translation unit.

• UniqueVariableName - A translation error must occur if more than one variable

directive appears in the same translation unit with the same value for the
name-given attribute or the same value for the name-from-attribute attribute. A
translation error must occur if there is a variable directive with a name-given

attribute equal to the value of the name attribute of an attribute directive in the
same translation unit. A translation error must occur if there is a variable di-
rective with a name-from-attribute attribute whose value is not equal to the
name attribute of an attribute directive in the same translation unit that is also
of type java.lang.String, that is required and that is not an rtexprvalue. A trans-
lation error must occur if the value of the alias attribute is equal to the value of
a name-given attribute of a variable directive, or the value of the name attribute
of an attribute directive in the same translation unit.

• TagFileSpecificActions - The invoke and doBody standard actions are only
matched if the JSPTagDef production was followed (i.e. if this is a tag file in-
stead of a JSP page).

• RTAttributeScriptingEnabled - If the RTAttributeValueDouble or RTAttributeVal-

ueSingle productions are visited during parsing and scripting is disabled for
this page, a translation error must be produced. See the scripting-invalid JSP
Configuration element (Section JSP.3.3.3).

Syntactic Elements of a JSP Page 1-29

JavaServer Pages 2.0 Specification

• ExpressionBodyContent - A translation error will result if the body content mi-
nus the closing delimiter (%>, or </jsp:expression>, depending on how the ex-
pression started) does not represent a well-formed expression in the scripting
language selected for the JSP page.

• StdActionAttributesValid - An attribute is considered “provided” for this stan-
dard action if either the Attribute production or the AttributeBody production is
followed in the context of the enclosing StandardAction production. A transla-
tion error will result if any of the following conditions is true:

■ The set of attributes “provided” for this standard action does not match one
of the valid attribute combinations specified in Table JSP.1-5.

■ The same attribute is “provided” more than once, as determined by the at-
tribute name.

■ An attribute is “provided” using the AttributeBody production that does not
accept a request-time expression value, as indicated by the = prefix in Table
JSP.1-5.

• StdActionBodyMatch - The StdActionBody production will only be matched if
the production listed for this standard action in the “Body Production” column
in Table JSP.1-5 is followed.

• AttributeBodyMatch - The type of element being specified determines which
production is followed (see Section JSP.5.10, “<jsp:attribute>”for details):

■ If a custom action that specifies an attribute of type JspFragment, Scriptless-
Body must be followed.

■ If a standard or custom action that accepts a request-time expression value,
AllJspBody must be followed.

■ If a standard or custom action that does not accept a request-time expression
value, TemplateTextBody must be followed.

• JspBodyBodyContent - The ScriptlessBody production must be followed if the
body content for this tag is scriptless. The Body production must be followed
if the body content for this tag is JSP. The TagDependentBody production
must be followed if the body content for this tag is tagdependent.

• UniqueAttSpec - A translation error will result if the same attribute name ap-
pears more than once.

• CustomActionMatchesAndValid - Following the rules in Section JSP.7.3 for de-
termining the relevant set of tags and tag libraries, assume the following:

■ Let U be the URI indicated by the uri AttributeValue of the previously encoun-

CORE SYNTAX AND SEMANTICS1-30

JavaServer Pages 2.0 Specification

tered TagLibDirectiveAttrList with prefix matching the TagPrefix for this poten-
tial custom action, or nil if no such TagLibDirectiveAttrList was encountered in
this translation unit.

■ If U is not nil, let L be the <taglib> element in the relevant TLD entry such that
L.uri is equal to U.

Then:
■ If, after being parsed, the CustomAction production is matched (not yet tak-

ing into account the following rules), TagPrefix is considered a potential Tag-
Prefix in this translation unit for the purposes of the
TagLibDirectiveUniquePrefix validity constraint.

■ The CustomAction production will not be matched if U is nil or if the TagPre-
fix does not match the prefix AttributeValue of a TagLibDirectiveAttrList previ-
ously encountered in this translation unit.

■ Otherwise, if the CustomAction production is matched, a translation error
will result if there does not exist a <tag> element T in a relevant TLD such
that L.T.name is equal to CustomActionName.

• CustomActionTagDependentMatch - Assume the definition of L from the Cus-

tomActionMatchesAndValid validity constraint above. The CustomAction-

TagDependent production is not matched if there does not exist a <tag>

element T in a relevant TLD such that L.T.body-content contains the value
tagdependent.

• CustomActionJSPContentMatch - Assume the definition of L from the Custom-

ActionMatchesAndValid validity constraint above. The CustomActionJSPCon-

tent production is not matched if there exists a <tag> element T in a relevant
TLD such that L.T.body-content does not contain the value JSP.

• CustomActionScriptlessContentMatch - Assume the definition of L from the
CustomActionMatchesAndValid validity constraint above. The CustomAction-

ScriptlessContent production is not matched if there does not exist a <tag> el-
ement T in a relevant TLD such that L.T.body-content contains the value
scriptless.

• QuotedDollarMatch - The ‘\$’ token is only matched if EL is enabled for this
translation unit. See Section JSP.3.3.2, “Deactivating EL Evaluation”.

• ETagMatch - Assume the definition of U from the CustomActionMatchesAnd-

Valid validity constraint. If TagPrefix is not ‘jsp’ and U is nil, the ETag produc-
tion is not matched. Otherwise, the ETag production is matched and a
translation error will result if the prefix and name of this closing tag does not
match the prefix and name of the starting tag at the corresponding nesting lev-

Syntactic Elements of a JSP Page 1-31

JavaServer Pages 2.0 Specification

el, or if there is no corresponding nesting level (i.e. too many closing tags).
This is similar to the way XML is defined, except that template text that looks
like a closing element with an unrecognized prefix is allowed in the body of a
custom or standard action. In the following example, assuming ‘my’ is a valid
prefix and ‘indent’ is a valid tag, the tag is considered template text, and
no translation error is produced:

<my:indent level=”2”>

</my:indent>

The following example, however, would produce a translation error, assuming
‘my’ is a valid prefix and ‘indent’ is a valid tag, and regardless of whether
‘othertag’ is a valid tag or not.

<my:indent level=”2”>
</my:othertag>

</my:indent>

• ExtraClosingTagMatch - The ExtraClosingTag production is not matched if en-
countered within two or more nested Body productions (e.g. if encountered in-
side the body of a standard or custom action).

JSP.1.3.10.3 Standard Action Attributes

Table JSP.1-5 specifies, for each standard action element, the bodies and the
attribute combinations that are valid. The value in the “Body Production” column
specifies a production name that must be matched for the body of the standard
action to be considered valid. The value in the “Valid Attribute Combinations”
column uses the same syntax as the attrset notation described at the start of
Section JSP.1.3.10, and indicates which attributes can be provided. Note that for
some valid attribute combinations, there are differing body productions. The first

CORE SYNTAX AND SEMANTICS1-32

JavaServer Pages 2.0 Specification

attribute combination to be matched selects the valid body production for this
standard action invocation.

Table JSP.1-5 Valid body content and attributes for Standard Actions

Element Body Production Valid Attribute Combinations

jsp:useBean OptionalBody
OptionalBody
OptionalBody
OptionalBody

(!id, scope, !class)
(!id, scope, !type)
(!id, scope, !class, !type)
(!id, scope, =!beanName, !type)

jsp:setProperty EmptyBody
EmptyBody

(!name, !property, param)
(!name, !property, =!value)

jsp:getProperty EmptyBody (!name, !property)

jsp:include ParamBody (=!page, flush)

jsp:forward ParamBody (=!page)

jsp:plugin PluginBody (!type, !code, !codebase, align,
archive, =height, hspace,
jreversion, name, vspace, title,
=width, nspluginurl, iepluginurl,
mayscript)

jsp:invoke EmptyBody
EmptyBody
EmptyBody

(!fragment, !var, scope)
(!fragment, !varReader, scope)
(!fragment)

jsp:doBody EmptyBody
EmptyBody
EmptyBody

(!var, scope)
(!varReader, scope)
()

jsp:element OptionalBody (=!name)

jsp:output EmptyBody
EmptyBody

(omit-xml-declaration)
(omit-xml-declaration,

!doctype-root-element,
!doctype-system, doctype-public)

jsp:param EmptyBody (!name, =!value)

Error Handling 1-33

JavaServer Pages 2.0 Specification

JSP.1.4 Error Handling

Errors may occur at translation time or at request time. This section describes
how errors are treated by a compliant implementation.

JSP.1.4.1 Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implemen-
tation class by a JSP container can occur at any time between initial deployment of
the JSP page into the JSP container and the receipt and processing of a client request
for the target JSP page. If translation occurs prior to the receipt of a client request for
the target JSP page, error processing and notification is implementation dependent
and not covered by this specification. In all cases, fatal translation failures shall
result in the failure of subsequent client requests for the translation target with the
appropriate error specification: For HTTP protocols the error status code 500

(Server Error) is returned.

JSP.1.4.2 Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of
the JSP page implementation class, or in some other code (Java or other implemen-
tation programming language) called from the body of the JSP page implementation
class. Runtime errors occurring are realized in the page implementation, using the
Java programming language exception mechanism to signal their occurrence to
caller(s) of the offending behavior1.

These exceptions may be caught and handled (as appropriate) in the body of
the JSP page implementation class.

Any uncaught exceptions thrown in the body of the JSP page implementation
class result in the forwarding of the client request and uncaught exception to the
errorPage URL specified by the JSP page (or the implementation default behavior,
if none is specified).

Information about the error is passed as javax.servlet.ServletRequest attributes
to the error handler, with the same attributes as specified by the Servlet
specification. Names starting with the prefixes java and javax are reserved by the

1. Note that this is independent of scripting language. This specification re-
quires that unhandled errors occurring in a scripting language environ-
ment used in a JSP container implementation to be signalled to the JSP
page implementation class via the Java programming language exception
mechanism.

CORE SYNTAX AND SEMANTICS1-34

JavaServer Pages 2.0 Specification

different specifications of the Java platform. The javax.servlet prefix is reserved
and used by the servlet and JSP specifications.

JSP.1.4.3 Using JSPs as Error Pages

A JSP is considered an Error Page if it sets the page directive’s isErrorPage

attribute to true. If a page has isErrorPage set to true, then the “exception” implicit
scripting language variable (see Table JSP.1-7) of that page is initialized. The
variable is set to the value of the javax.servlet.error.exception request attribute
value if present, otherwise to the value of the javax.servlet.jsp.jspException request
attribute value (for backwards compatibility for JSP pages pre-compiled with a
JSP 1.2 compiler).

In addition, an ErrorData instance must be initialized based on the error
handler ServletRequest attributes defined by the Servlet specification, and made
available through the PageContext to the page. This has the effect of providing
easy access to the error information via the Expression Language. For example, an
Error Page can access the status code using the syntax ${pageContext.error-

Data.statusCode}. See Chapter JSP.12 for details.

JSP.1.5 Comments

There are two types of comments in a JSP page: comments to the JSP page
itself, documenting what the page is doing; and comments that are intended to
appear in the generated document sent to the client.

JSP.1.5.1 Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the
requesting client, the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP
container. Dynamic content that appears within HTML/XML comments, such as
actions, scriptlets and expressions, is still processed by the container. If the
generated comment is to have dynamic data, this can be obtained through an
expression syntax, as in:

<!-- comments <%= expression %> more comments ... -->

Quoting and Escape Conventions 1-35

JavaServer Pages 2.0 Specification

JSP.1.5.2 JSP Comments

A JSP comment is of the form

<%-- anything but a closing --%> ... --%>

The body of the content is ignored completely. Comments are useful for
documentation but also are used to “comment out” some portions of a JSP page.
Note that JSP comments do not nest.

An alternative way to place a comment in JSP is to use the comment
mechanism of the scripting language. For example:

<% /** this is a comment ... **/ %>

JSP.1.6 Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

Note – The current quoting rules do not allow for quoting special characters
such as \n - the only current way to do this in a JSP is with a Java expression.

Quoting in EL Expressions

■ There is no special quoting mechanism within EL expressions; use a literal
‘${‘ if the literal ${ is desired and expressions are enabled for the page. For
example, the evaluation of ${‘${‘} is ‘${‘. Note that ${‘}’} is legal, and simply
evaluates to ‘}’.

Quoting in Scripting Elements

■ A literal %> is quoted by %\>

Quoting in Template Text

■ A literal <% is quoted by <\%

■ Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$. This is not required but is
useful for quoting EL expressions.

CORE SYNTAX AND SEMANTICS1-36

JavaServer Pages 2.0 Specification

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute value is a
literal or a request-time attribute expression. Quoting can be used in attribute
values regardless of whether they are delimited using single or double quotes. It is
only required as described below.

■ A ‘ is quoted as \’. This is required within a single quote-delimited attribute
value.

■ A “ is quoted as \”. This is required within a double quote-delimited attribute
value.

■ A \ is quoted as \\

■ Only when the EL is enabled for a page (see Section JSP.3.3.2, “Deactivating
EL Evaluation”), a literal $ can be quoted by \$. This is not required but is
useful for quoting EL expressions.

■ A %> is quoted as %\>

■ A <% is quoted as <\%

■ The entities ' and " are available to describe single and double
quotes.

Examples

The following line shows an illegal attribute values.

<mytags:tag value="<%= "hi!" %>" />

The following line shows a legal scriptlet, but perhaps with an intended value.
The result is Joe said %\> not Joe said %>.

<%= "Joe said %\\>" %>

The next lines are all legal quotations.

<%= "Joe said %/>" %>

<%= "Joe said %\>" %>

<% String joes_statement = "hi!"; %>

<%= "Joe said \"" + joes_statement + "\"." %>

<x:tag value='<%="Joe said \\"" + joes_statement + "\\"."%>'/>

Overall Semantics of a JSP Page 1-37

JavaServer Pages 2.0 Specification

<x:tag value='<%= "hi!" %>' />

<x:tag value="<%= \"hi!\" %>" />

<x:tag value='<%= \"name\" %>' />

<x:tag value="<%= \"Joe said 'hello'\" %>"/>

<x:tag value="<%= \"Joe said \\\"hello\\\" \" %>"/>

<x:tag value="end expression %\>"/>

<% String s="abc"; %>

<x:tag value="<%= s + \"def\" + \"jkl\" + 'm' + \'n\' %>" />

<x:tag value='<%= s + \"def\" + "jkl" + \'m\' + \'n\' %>' />

XML Documents

The quoting conventions are different from those of XML. See Chapter JSP.6.

JSP.1.7 Overall Semantics of a JSP Page

A JSP page implementation class defines a _jspService() method mapping from
the request to the response object. Some details of this transformation are specific to
the scripting language used (see Chapter JSP.9). Most details are not language spe-
cific and are described in this chapter.

The content of a JSP page is devoted largely to describing the data that is
written into the output stream of the response. (The JSP container usually sends
this data back to the client.) The description is based on a JspWriter object that is
exposed through the implicit object out (see Section JSP.1.8.3, “Implicit
Objects”). Its value varies:

• Initially, out is a new JspWriter object. This object may be different from the
stream object returned from response.getWriter(), and may be considered to be
interposed on the latter in order to implement buffering (see
Section JSP.1.10.1, “The page Directive”). This is the initial out object. JSP
page authors are prohibited from writing directly to either the PrintWriter or
OutputStream associated with the ServletResponse.

• The JSP container should not invoke response.getWriter() until the time when
the first portion of the content is to be sent to the client. This enables a number
of uses of JSP, including using JSP as a language to “glue” actions that deliver

CORE SYNTAX AND SEMANTICS1-38

JavaServer Pages 2.0 Specification

binary content, or reliably forwarding to a servlet, or change dynamically the
content type of the respose before generating content. See Chapter JSP.4.

• Within the body of some actions, out may be temporarily re-assigned to a dif-
ferent (nested) instance of a JspWriter object. Whether this is the case depends
on the details of the action’s semantics. Typically the content of these tempo-
rary streams is appended to the stream previously referred to by out, and out is
subsequently re-assigned to refer to the previous (nesting) stream. Such nest-
ed streams are always buffered, and require explicit flushing to a nesting
stream or their contents will be discarded.

• If the initial out JspWriter object is buffered, then depending upon the value of
the autoFlush attribute of the page directive, the content of that buffer will ei-
ther be automatically flushed out to the ServletResponse output stream to ob-
viate overflow, or an exception shall be thrown to signal buffer overflow. If the
initial out JspWriter is unbuffered, then content written to it will be passed di-
rectly through to the ServletResponse output stream.

A JSP page can also describe what should happen when some specific events
occur. In JSP 2.0, the only events that can be described are the initialization and
the destruction of the page. These events are described using “well-known method
names” in declaration elements. (See Section JSP.11.1.1.1).

JSP.1.8 Objects

A JSP page can access, create, and modify server-side objects. Objects can be
made visible to actions, EL expressions and to scripting elements. An object has a
scope describing what entities can access the object.

Actions can access objects using a name in the PageContext object.
An object exposed through a scripting variable has a scope within the page.

Scripting elements can access some objects directly via a scripting variable. Some
implicit objects are visible via scripting variables and EL expressions in any JSP
page.

JSP.1.8.1 Objects and Variables

An object may be made accessible to code in the scripting elements through a
scripting language variable. An element can define scripting variables that will con-
tain, at process request-time, a reference to the object defined by the element,
although other references may exist depending on the scope of the object.

Objects 1-39

JavaServer Pages 2.0 Specification

An element type indicates the name and type of such variables although
details on the name of the variable may depend on the Scripting Language. The
scripting language may also affect how different features of the object are
exposed. For example, in the JavaBeans specification, properties are exposed via
getter and setter methods, while these properties are available directly as variables
in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language
specific. Chapter JSP.1.1 defines the rules for when the language attribute of the
page directive is java.

JSP.1.8.2 Objects and Scopes

A JSP page can create and/or access some Java objects when processing a
request. The JSP specification indicates that some objects are created implicitly,
perhaps as a result of a directive (see Section JSP.1.8.3, “Implicit Objects”). Other
objects are created explicitly through actions, or created directly using scripting
code. Created objects have a scope attribute defining where there is a reference to
the object and when that reference is removed.

The created objects may also be visible directly to scripting elements through
scripting-level variables (see Section JSP.1.8.3, “Implicit Objects”).

Each action and declaration defines, as part of its semantics, what objects it
creates, with what scope attribute, and whether they are available to the scripting
elements.

Objects are created within a JSP page instance that is responding to a request
object. There are several scopes:

• page - Objects with page scope are accessible only within the page where they
are created. All references to such an object shall be released after the response
is sent back to the client from the JSP page or the request is forwarded some-
where else. References to objects with page scope are stored in the pageCon-

text object.

• request - Objects with request scope are accessible from pages processing the
same request where they were created. References to the object shall be re-
leased after the request is processed. In particular, if the request is forwarded
to a resource in the same runtime, the object is still reachable. References to
objects with request scope are stored in the request object.

• session - Objects with session scope are accessible from pages processing re-
quests that are in the same session as the one in which they were created. It is
not legal to define an object with session scope from within a page that is not

CORE SYNTAX AND SEMANTICS1-40

JavaServer Pages 2.0 Specification

session-aware (see Section JSP.1.10.1, “The page Directive”). All references
to the object shall be released after the associated session ends. References to
objects with session scope are stored in the session object associated with the
page activation.

• application - Objects with application scope are accessible from pages process-
ing requests that are in the same application as they one in which they were cre-
ated. Objects with application scope can be defined (and reached) from pages
that are not session-aware. References to objects with application scope are
stored in the application object associated with a page activation. The applica-

tion object is the servlet context obtained from the servlet configuration object.
All references to the object shall be released when the runtime environment re-
claims the ServletContext.

A name should refer to a unique object at all points in the execution; that is,
all the different scopes really should behave as a single name space. A JSP
container implementation may or may not enforce this rule explicitly for
performance reasons.

JSP.1.8.3 Implicit Objects

JSP page authors have access to certain implicit objects that are always avail-
able for use within scriptlets and scriptlet expressions through scripting variables
that are declared implicitly at the beginning of the page. All scripting languages are
required to provide access to these objects. See Section JSP.2.2.3 for the implicit
objects available within EL expressions. Implicit objects are available to tag han-
dlers through the pageContext object, see below.

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet API package, as shown in Table JSP.1-6.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable
Name Type Semantics & Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.http.HttpServletRequest

The request triggering
the service invocation.
request scope.

Objects 1-41

JavaServer Pages 2.0 Specification

response protocol dependent subtype of:
javax.servlet.ServletResponse, e.g:
javax.servlet.http.HttpServletResponse

The response to the
request.
page scope.

pageContext javax.servlet.jsp.PageContext The page context for this
JSP page.
page scope.

session javax.servlet.http.HttpSession The session object
created for the requesting
client (if any).
This variable is only
valid for HTTP
protocols.
session scope

application javax.servlet.ServletContext The servlet context
obtained from the servlet
configuration object
(as in the call getServlet-
Config().
getContext())
application scope

out javax.servlet.jsp.JspWriter An object that writes into
the output stream.
page scope

config javax.servlet.ServletConfig The ServletConfig for
this JSP page
page scope

page java.lang.Object The instance of this
page’s implementation
class processing the
current requesta

page scope

a. When the scripting language is java then page is a synonym for this in the
body of the page.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable
Name Type Semantics & Scope

CORE SYNTAX AND SEMANTICS1-42

JavaServer Pages 2.0 Specification

In addition, the exception implicit object can be accessed in an error page, as
described in Table JSP.1-7.

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

See Section JSP.7.5.1 for some non-normative conventions for the
introduction of new implicit objects.

JSP.1.8.4 The pageContext Object

A PageContext is an object that provides a context to store references to objects
used by the page, encapsulates implementation-dependent features, and provides
convenience methods. A JSP page implementation class can use a PageContext to
run unmodified in any compliant JSP container while taking advantage of imple-
mentation-specific improvements like high performance JspWriters.

See Chapter JSP.12 for more details.

JSP.1.9 Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template
text is passed through to the current out JspWriter implicit object, after applying the
substitutions of Section JSP.1.6, “Quoting and Escape Conventions”.

JSP.1.10 Directives

Directives are messages to the JSP container. Directives have this syntax:

<%@ directive { attr=”value” }* %>

There may be optional white space after the <%@ and before %>.

Table JSP.1-7 Implicit Objects Available in Error Pages

Variable
Name Type Semantics & Scope

exception java.lang.Throwable The uncaught Throwable
that resulted in the error
page being invoked.
page scope.

Directives 1-43

JavaServer Pages 2.0 Specification

This syntax is easy to type and concise but it is not XML-compatible.
Chapter JSP.6 describes equivalent alternative mechanisms that are consistent
with XML syntax.

Directives do not produce any output into the current out stream.
There are three directives: the page and the taglib directives are described

next, while the include directive is described in “The include Directive” on
page 51.

JSP.1.10.1 The page Directive

The page directive defines a number of page dependent properties and commu-
nicates these to the JSP container.

This <jsp:directive.page> element (Section JSP.6.3.4) describes the same
information following the XML syntax.

A translation unit (JSP source file and any files included via the include

directive) can contain more than one instance of the page directive, all the
attributes will apply to the complete translation unit (i.e. page directives are
position independent). An exception to this position independence is the use of the
pageEncoding and contentType attributes in the determination of the page
character encoding; for this purpose, they should appear at the beginning of the
page (see Section JSP.4.1). There shall be only one occurrence of any attribute/
value pair defined by this directive in a given translation unit, unless the values for
the duplicate attributes are identical for all occurrences. The import and pageEn-

coding attributes are exempt from this rule and can appear multiple times.
Multiple uses of the import attribute are cumulative (with ordered set union
semantics). The pageEncoding attribute can occur at most once per file (or a
translation error will result), and applies only to the file in which it appears. Other
such multiple attribute/value (re)definitions result in a fatal translation error if the
values do not match.

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

The following directive provides some user-visible information on this JSP
page:

<%@ page info=”my latest JSP Example” %>

CORE SYNTAX AND SEMANTICS1-44

JavaServer Pages 2.0 Specification

The following directive requests no buffering, and provides an error page.

<%@ page buffer=”none” errorPage=”/oops.jsp” %>

The following directive indicates that the scripting language is based on Java,
that the types declared in the package com.myco are directly available to the
scripting code, and that a buffering of 16KB should be used.

<%@ page language=”java” import=”com.myco.*” buffer=”16kb” %>

Syntax

<%@ page page_directive_attr_list %>

page_directive_attr_list ::= { language=”scriptingLanguage”}

{ extends=”className” }

{ import=”importList” }

{ session=”true|false” }

{ buffer=”none|sizekb” }

{ autoFlush=”true|false” }

{ isThreadSafe=”true|false” }

{ info=”info_text” }

{ errorPage=”error_url” }

{ isErrorPage=”true|false” }

{ contentType=”ctinfo” }

{ pageEncoding=”peinfo” }

{ isELIgnored=”true|false” }

Directives 1-45

JavaServer Pages 2.0 Specification

The details of the attributes are as follows:

Table JSP.1-8 Page Directive Attributes

language Defines the scripting language to be used in the scriptlets,
expression scriptlets, and declarations within the body of the
translation unit (the JSP page and any files included using
the include directive below).
In JSP 2.0, the only defined and required scripting language
value for this attribute is java.
This specification only describes the semantics of scripts for
when the value of the language attribute is java.
When java is the value of the scripting language, the Java
Programming Language source code fragments used within
the translation unit are required to conform to the Java
Programming Language Specification in the way indicated
in Chapter JSP.9.
All scripting languages must provide some implicit objects
that a JSP page author can use in declarations, scriptlets, and
expressions. The specific objects that can be used are defined
in Section JSP.1.8.3, “Implicit Objects”.”
All scripting languages must support the Java Runtime
Environment (JRE). All scripting languages must expose the
Java technology object model to the script environment,
especially implicit variables, JavaBeans component
properties, and public methods.
Future versions of the JSP specification may define
additional values for the language attribute and all such
values are reserved.
It is a fatal translation error for a directive with a non-java
language attribute to appear after the first scripting element
has been encountered.
Default is java.

extends The value is a fully qualified Java programming language
class name, that names the superclass of the class to which
this JSP page is transformed (see Chapter JSP.11).
This attribute should not be used without careful
consideration as it restricts the ability of the JSP container to
provide specialized superclasses that may improve on the
quality of rendered service. See Section JSP.7.5.1 for an
alternate way to introduce objects into a JSP page that does
not have this drawback.

CORE SYNTAX AND SEMANTICS1-46

JavaServer Pages 2.0 Specification

import An import attribute describes the types that are available to
the scripting environment. The value is as in an import
declaration in the Java programming language, a (comma
separated) list of either a fully qualified Java programming
language type name denoting that type, or of a package name
followed by the .* string, denoting all the public types
declared in that package. The import list shall be imported
by the translated JSP page implementation and is thus
available to the scripting environment.
The default import list is java.lang.*, javax.servlet.*,
javax.servlet.jsp.* and javax.servlet.http.*.
This attribute is currently only defined when the value of the
language directive is java.

session Indicates that the page requires participation in an (HTTP)
session.
If true then the implicit script language variable named ses-
sion of type javax.servlet.http.HttpSession references the
current/new session for the page.
If false then the page does not participate in a session; the
session implicit variable is unavailable, and any reference to
it within the body of the JSP page is illegal and shall result in
a fatal translation error.
Default is true.

buffer Specifies the buffering model for the initial out JspWriter to
handle content output from the page.
If none, then there is no buffering and all output is written
directly through to the ServletResponse PrintWriter.
The size can only be specified in kilobytes. The suffix kb is
mandatory or a translation error must occur.
If a buffer size is specified then output is buffered with a
buffer size not less than that specified.
Depending upon the value of the autoFlush attribute, the
contents of this buffer is either automatically flushed, or an
exception is raised, when overflow would occur.
The default is buffered with an implementation buffer size of
not less than 8kb.

Table JSP.1-8 Page Directive Attributes

Directives 1-47

JavaServer Pages 2.0 Specification

autoFlush Specifies whether the buffered output should be flushed
automatically (true value) when the buffer is filled, or
whether an exception should be raised (false value) to
indicate buffer overflow. It is illegal, resulting in a translation
error, to set autoFlush to false when buffer=none. The default
value is true.

isThreadSafe Note: The Servlet 2.4 specification deprecates
SingleThreadModel, which is the most common
mechanism for JSP containers to implement isThreadSafe.
Page authors are advised against using isThreadSafe, as
the generated Servlet may contain deprecated code.

Indicates the level of thread safety implemented in the page.
If false then the JSP container shall dispatch multiple
outstanding client requests, one at a time, in the order they
were received, to the page implementation for processing.
If true then the JSP container may choose to dispatch
multiple outstanding client requests to the page
simultaneously.
Page authors using true must ensure that they properly
synchronize access to the shared state of the page.
Default is true.
Note that even if the isThreadSafe attribute is false the JSP
page author must ensure that accesses to any shared objects
are properly synchronized., The objects may be shared in
either the ServletContext or the HttpSession.

info Defines an arbitrary string that is incorporated into the
translated page, that can subsequently be obtained from the
page’s implementation of Servlet.getServletInfo method.

isErrorPage Indicates if the current JSP page is intended to be the URL
target of another JSP page’s errorPage.
If true, then the implicit script language variable exception is
defined and its value is a reference to the offending
Throwable from the source JSP page in error.
If false then the exception implicit variable is unavailable,
and any reference to it within the body of the JSP page is
illegal and shall result in a fatal translation error.
Default is false.

Table JSP.1-8 Page Directive Attributes

CORE SYNTAX AND SEMANTICS1-48

JavaServer Pages 2.0 Specification

errorPage Defines a URL to a resource to which any Java programming
language Throwable object(s) thrown but not caught by the
page implementation are forwarded for error processing.
The provided URL spec is as in Section JSP.1.2.1.
If the URL names another JSP page then, when invoked that
JSP page’s exception implicit script variable shall contain a
reference to the originating uncaught Throwable.
The default URL is implementation dependent.
Note the Throwable object is transferred by the throwing
page implementation to the error page implementation by
saving the object reference on the common ServletRequest
object using the setAttribute method, with a name of
javax.servlet.jsp.jspException (for backwards-compatibility)
and also javax.servlet.error.exception (for compatibility with
the servlet specification). See Section JSP.1.4.3 for more
details).
Note: if autoFlush=true then if the contents of the initial Jsp-
Writer has been flushed to the ServletResponse output stream
then any subsequent attempt to dispatch an uncaught
exception from the offending page to an errorPage may fail.
If the page defines an error page via the page directive, any
error pages defined in web.xml will not be used.

contentType Defines the MIME type and the character encoding for the
response of the JSP page, and is also used in determining the
character encoding of the JSP page.
Values are either of the form “TYPE” or “TYPE;char-
set=CHARSET”with an optional white space after the “;”.
“TYPE” is a MIME type, see the IANA registry at http://
www.iana.org/assignments/media-types/index.html for useful
values. “CHARSET”, if present, must be the IANA name for
a character encoding.
The default value for “TYPE” is “text/html” for JSP pages in
standard syntax, or “text/xml” for JSP documents in XML
syntax. If “CHARSET” is not specified, the response
character encoding is determined as described in
Section JSP.4.2, “Response Character Encoding”.
See Chapter JSP.4 for complete details on character
encodings.

Table JSP.1-8 Page Directive Attributes

Directives 1-49

JavaServer Pages 2.0 Specification

JSP.1.10.2 The taglib Directive

The set of significant tags a JSP container interprets can be extended through a
tag library.

The taglib directive in a JSP page declares that the page uses a tag library,
uniquely identifies the tag library using a URI and associates a tag prefix that will
distinguish usage of the actions in the library.

If a JSP container implementation cannot locate a tag library description, a
fatal translation error shall result.

It is a fatal translation error for the taglib directive to appear after actions or
functions using the prefix.

pageEncoding Describes the character encoding for the JSP page. The value
is of the form “CHARSET”, which must be the IANA name
for a character encoding. For JSP pages in standard syntax,
the character encoding for the JSP page is the charset given
by the pageEncoding attriute if it is present, otherwise the
charset given by the contentType attribute if it is present,
otherwise “ISO-8859-1”.
For JSP documents in XML syntax, the character encoding
for the JSP page is determined as described in section 4.3.3
and appendix F.1 of the XML specification. The pageEncod-
ing attribute is not needed for such documents. It is a
translation-time error if a document names different
encodings in its XML prolog / text declaration and in the
pageEncoding attribute. The corresponding JSP
configuration element is page-encoding (see
Section JSP.3.3.4, “Declaring Page Encodings”).
See Chapter JSP.4 for complete details on character
encodings.

isELIgnored Defines whether EL expressions are ignored or evaluated for
this page and translation unit. If true, EL expressions (of the
form ${...}) are ignored by the container. If false, EL
expressions (of the form ${...}) are evaluated when they
appear in template text or action attributes. The
corresponding JSP configuration element is el-ignored (see
Section JSP.3.3.2). The default value varies depending on the
web.xml version - see Section JSP.2.2.4, “Deactivating EL
Evaluation”.

Table JSP.1-8 Page Directive Attributes

CORE SYNTAX AND SEMANTICS1-50

JavaServer Pages 2.0 Specification

A tag library may include a validation method that will be consulted to
determine if a JSP page is correctly using the tag library functionality.

See Chapter JSP.7 for more specification details. And see Section JSP.7.2.3
for an implementation note.

Section JSP.6.3.1 describes how the functionality of this directive can be
exposed using XML syntax.

Examples

In the following example, a tag library is introduced and made available to
this page using the super prefix; no other tag libraries should be introduced in
this page using this prefix. In this particular case, we assume the tag library
includes a doMagic element type, which is used within the page.

<%@ taglib uri=”http://www.mycorp/supertags” prefix=”super” %>

...

<super:doMagic>

...

</super:doMagic>

Syntax

<%@ taglib (uri=”tagLibraryURI” | tagdir=”tagDir”) prefix=”tagPrefix” %>

where the attributes are:

Table JSP.1-9

uri Either an absolute URI or a relative URI specification that
uniquely identifies the tag library descriptor associated with
this prefix.
The URI is used to locate a description of the tag library as
indicated in Chapter 7.

Directives 1-51

JavaServer Pages 2.0 Specification

A fatal translation-time error will result if the JSP page translator encounters a
tag with name prefix: Name using a prefix that is introduced using the taglib
directive, and Name is not recognized by the corresponding tag library.

JSP.1.10.3 The include Directive

The include directive is used to substitute text and/or code at JSP page transla-
tion-time. The <%@ include file=”relativeURLspec” %> directive inserts the text of
the specified resource into the page or tag file. The included file is subject to the
access control available to the JSP container. The file attribute is as in
Section JSP.1.2.1.

With respect to the standard and XML syntaxes, a file included via the include

directive can use either the same syntax as the including page, or a different
syntax. the semantics for mixed syntax includes are described in
Section JSP.1.10.5.

A JSP container can include a mechanism for being notified if an included file
changes, so the container can recompile the JSP page. However, the JSP 2.0
specification does not have a way of directing the JSP container that included files
have changed.

The <jsp:directive.include> element (Section JSP.6.3.5) describes the same
information following the XML syntax.

tagdir Indicates this prefix is to be used to identify tag extensions
installed in the /WEB-INF/tags/ directory or a subdirectory.
An implicit tag library descriptor is used (see Section JSP.8.4
for details). A translation error must occur if the value does
not start with /WEB-INF/tags/. A translation error must occur
if the value does not point to a directory that exists. A
translation error must occur if used in conjunction with the
uri attribute.

prefix Defines the prefix string in <prefix>:<tagname> that is used to
distinguish a custom action, e.g <myPrefix:myTag>.
Prefixes starting with jsp:, jspx:, java:, javax:, servlet:, sun:,
and sunw: are reserved.
A prefix must follow the naming convention specified in the
XML namespaces specification.
Empty prefixes are illegal in this version of the specification,
and must result in a translation error.

Table JSP.1-9

CORE SYNTAX AND SEMANTICS1-52

JavaServer Pages 2.0 Specification

Examples

The following example requests the inclusion, at translation time, of a copy-
right file. The file may have elements which will be processed too.

<%@ include file=”copyright.html” %>

Syntax

<%@ include file="relativeURLspec" %>

JSP.1.10.4 Implicit Includes

Many JSP pages start with a list of taglib directives that activate the use of tag
libraries within the page. In some cases, these are the only tag libraries that are sup-
posed to be used by the JSP page authors. These, and other common conventions are
greately facilitated by two JSP configuration elements: include-prelude and include-

coda. A full description of the mechanism is in Section JSP.3.3.5.
With respect to the standard and XML syntaxes, just as with the include

directive, implicit includes can use either the same syntax as the including page,
or a different syntax. The semantics for mixed syntax includes are described in
Section JSP.1.10.5.

JSP.1.10.5 Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the
JSP 2.0 specification has two include mechanisms suited to different tasks. A sum-
mary of their semantics is shown in Table JSP.1-10.

Table JSP.1-10 Summary of Include Mechanisms in JSP 2.0

Syntax Spec Object Description Section

Include Directive - Translation-time

<%@ include file=... %> file-
relative

static Content is parsed
by JSP container.

JSP.1.10.3

Include Action - Request-time

<jsp:include page= /> page-
relative

static
and dynamic

Content is not
parsed; it is
included in place.

JSP.5.4

Directives 1-53

JavaServer Pages 2.0 Specification

The Spec column describes what type of specification is valid to appear in the
given element. The JSP specification requires a relative URL spec. The reference
is resolved by the web/application server and its URL map is involved. Include
directives are interpreted relative to the current JSP file; jsp:include actions are
interpreted relative to the current JSP page.

An include directive regards a resource like a JSP page as a static object; i.e.
the text in the JSP page is included. An include action regards a resource like a
JSP page as a dynamic object; i.e. the request is sent to that object and the result of
processing it is included.

Implicit include directives can also be requested for a collection of pages
through the use of the <include-prelude> and <include-coda> elements of the JSP
configuration section of web.xml.

For translation-time includes, included content can use either the same syntax
as the including page, or a different syntax. For example, a JSP file written in the
standard JSP syntax can include a JSP file written using the XML syntax. The
following semantics for translation-time includes apply:

• The JSP container must detect the syntax for each JSP file individually and
parse each JSP file according to the syntax in which it is written.

• A JSP file written using the XML syntax must be well-formed according to
the "XML" and "Namespaces in XML" specifications, otherwise a translation
error must occur.

• When including a JSP document (written in the XML syntax), in the resulting
XML View of the translation unit the root element of the included segment
must have the default namespace reset to "". This is so that any namespaces
associated with the empty prefix in the including document are not carried
over to the included document.

• When a taglib directive is encountered in a standard syntax page, the
namespace is applied globally, and is added to the <jsp:root> element of the
resulting XML View of the translation unit.

• If a taglib directive is encountered in a standard syntax page that attempts to
redefine a prefix that is already defined in the current scope (by a JSP segment
in either syntax), a translation error must occur unless that prefix is being re-
defined to the same namespace URI.

See Section JSP.10.3 for examples of how these semantics are applied to
actual JSP pages and documents.

CORE SYNTAX AND SEMANTICS1-54

JavaServer Pages 2.0 Specification

JSP.1.10.6 Additional Directives for Tag Files

Additional directives are available when editing a tag file. See Section JSP.8.5,
“Tag File Directives” for details.

JSP.1.11 EL Elements

EL expressions can appear in template data and in attribute values. EL expres-
sions a defined in more detail in Chapter 2.

EL expressions can be disabled through the use of JSP configuration elements
and page directives; see Section JSP.1.10.1 and Section JSP.3.3.2.

EL expressions, when not disabled, can be used anywhere within template
data.

EL expressions can be used in any attribute of a standard action that this
specification indicates can accept a run-time expression value, and in any attribute
of a custom action that has been indicated to accept run-time expressions (i.e.
their associated <rtexprvalue> in the TLD is true; see Appendix JSP.C).

JSP.1.12 Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform
computation that affects the content generated.

JSP 2.0 adds EL expressions as an alternative to scripting elements. These are
described in more detail in Chapter JSP.2. Note that scripting elements can be
disabled through the use of the scripting-invalid element in the web.xml deployment
descriptor (see Section JSP.3.3.3).

There are three other classes of scripting elements: declarations, scriptlets
and expressions. The scripting language used in the current page is given by the
value of the language directive (see Section JSP.1.10.1, “The page Directive”). In
JSP 2.0, the only value defined is java.

Declarations are used to declare scripting language constructs that are
available to all other scripting elements. Scriptlets are used to describe actions to
be performed in response to some request. Scriptlets that are program fragments
can also be used to do things like iterations and conditional execution of other
elements in the JSP page. Expressions are complete expressions in the scripting
language that get evaluated at response time; commonly, the result is converted
into a string and inserted into the output stream.

Scripting Elements 1-55

JavaServer Pages 2.0 Specification

All JSP containers must support scripting elements based on the Java
programming language. Additionally, JSP containers may also support other
scripting languages. All such scripting languages must support:

• Manipulation of Java objects.

• Invocation of methods on Java objects.

• Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements
based on the Java programming language is given in Chapter JSP.9.

The semantics for other scripting languages are not precisely defined in this
version of the specification, which means that portability across implementations
cannot be guaranteed. Precise definitions may be given for other languages in the
future.

Each scripting element has a <%-based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %>
<%= this is an expression %>

White space is optional after <%!, <%, and <%=, and before %>.
The equivalent XML elements for these scripting elements are described in

Section JSP.6.3.7.

JSP.1.12.1 Declarations

Declarations are used to declare variables and methods in the scripting language
used in a JSP page. A declaration must be a complete declarative statement, or
sequence thereof, according to the syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.
Declarations are initialized when the JSP page is initialized and are made

available to other declarations, scriptlets, and expressions.
The <jsp:declaration> element (Section JSP.6.3.7) describes the same

information following the XML syntax.

Examples

For example, the first declaration below declares an integer, global to the
page. The second declaration does the same and initializes it to zero. This type
of initialization should be done with care in the presence of multiple requests

CORE SYNTAX AND SEMANTICS1-56

JavaServer Pages 2.0 Specification

on the page. The third declaration declares a method global to the page.

<%! int i; %>

<%! int i = 0; %>

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

Syntax

<%! declaration(s) %>

JSP.1.12.2 Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting lan-
guage specified in the language attribute of the page directive. Whether the code
fragment is legal depends on the details of the scripting language (see
Chapter JSP.9).

Scriptlets are executed at request-processing time. Whether or not they
produce any output into the out stream depends on the code in the scriptlet.
Scriptlets can have side-effects, modifying the objects visible to them.

When all scriptlet fragments in a given translation unit are combined in the
order they appear in the JSP page, they must yield a valid statement, or sequence
of statements, in the specified scripting language.

To use the %> character sequence as literal characters in a scriptlet, rather
than to end the scriptlet, escape them by typing %\>.

The <jsp:scriptlet> element (Section JSP.6.3.7) describes the same information
following the XML syntax.

Examples

Here is a simple example where the page changed dynamically depending on
the time of day.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning
<% } else { %>
Good Afternoon
<% } %>

Scripting Elements 1-57

JavaServer Pages 2.0 Specification

A scriptlet can also have a local variable declaration, for example the following
scriptlet just declares and initializes an integer, and later increments it.

<% int i; i= 0; %>
About to increment i...
<% i++ %>

Syntax

<% scriptlet %>

JSP.1.12.3 Expressions

An expression element in a JSP page is a scripting language expression that is
evaluated and the result is coerced to a String. The result is subsequently emitted
into the current out JspWriter object.

If the result of the expression cannot be coerced to a String the following must
happen: If the problem is detected at translation time, a translation time error shall
occur. If the coercion cannot be detected during translation, a ClassCastException

shall be raised at request time.
A scripting language may support side-effects in expressions when the

expression is evaluated. Expressions are evaluated left-to-right in the JSP page. If
an expression appears in more than one run-time attribute, they are evaluated left-
to-right in the tag. An expression might change the value of the out object,
although this is not something to be done lightly.

The expression must be a complete expression in the scripting language in
which it is written, or a translation error must occur.

Expressions are evaluated at request processing time. The value of an
expression is converted to a String and inserted at the proper position in the .jsp

file.
The <jsp:expression> element (Section JSP.6.3.7) describes the same

information following the XML syntax.

Examples

This example inserts the current date.

<%= (new java.util.Date()).toLocaleString() %>

CORE SYNTAX AND SEMANTICS1-58

JavaServer Pages 2.0 Specification

Syntax

<%= expression %>

JSP.1.13 Actions

Actions may affect the current out stream and use, modify and/or create objects.
Actions may depend on the details of the specific request object received by the JSP
page.

The JSP specification includes some actions that are standard and must be
implemented by all conforming JSP containers; these actions are described in
Chapter 5.

New actions are defined according to the mechanisms described in Chapters 7
and 13 and are introduced using the taglib directive.

The syntax for action elements is based on XML. Actions can be empty or
non-empty.

JSP.1.14 Tag Attribute Interpretation Semantics

The interpretation of all actions start by evaluating the values given to its
attributes left to right, and assigning the values to the attributes. In the process some
conversions may be applicable; the rules for them are described in
Section JSP.1.14.2.

Many values are fixed translation-time values, but JSP 2.0 also provides a
mechanism for describing values that are computed at request time, the rules are
described in Section JSP.1.14.1.

JSP.1.14.1 Request Time Attribute Values

An attribute value of the form “<%= scriptlet_expr %>” or
‘<%= scriptlet_expr %>’ denotes a request-time attribute value. The value denoted
is that of the scriptlet expression involved. If Expression Language evaluation is
not deactivated for the translation unit (see Section JSP.3.3.2, “Deactivating EL
Evaluation”) then request-time attribute values can also be specified using the EL
using the syntax ‘${el_expr}’ or “${el_expr}”. Containers must also recognize
multiple EL expressions mixed with optional string constants. For example,
“Version ${major}.${minor} Installed” is a valid request-time attribute value.

Tag Attribute Interpretation Semantics 1-59

JavaServer Pages 2.0 Specification

Request-time attribute values can only be used in actions. If a request-time
attribute value is used in a directive, a translation error must occur. If there are
more than one such attribute in a tag, the expressions are evaluated left-to-right.

Quotation is done as in any other attribute value (Section JSP.1.6).
Only attribute values can be denoted this way (the name of the attribute is

always an explicit name). When using scriptlet expressions, the expression must
appear by itself (multiple expressions, and mixing of expressions and string
constants are not permitted). Multiple operations must be performed within the
expression. Type conversions are described in Section JSP.1.14.2.

By default, except in tag files, all attributes have page translation-time
semantics. Attempting to specify a scriptlet expression or EL expression as the
value for an attribute that (by default or otherwise) has page translation time
semantics is illegal, and will result in a fatal translation error. The type of an
action element indicates whether a given attribute will accept request-time
attribute values.

Most attributes in the standard actions from Chapter 5 have page translation-
time semantics, but the following attributes accept request-time attribute
expressions:

• The value attribute of jsp:setProperty (Section JSP.5.2).

• The beanName attribute of jsp:useBean (Section JSP.5.1).

• The page attribute of jsp:include (Section JSP.5.4).

• The page attribute of jsp:forward (Section JSP.5.5).

• The value attribute of jsp:param (Section JSP.5.6).

• The height and width attributes of jsp:plugin (Section JSP.5.7).

• The name attribute of jsp:element (Section JSP.5.14).

JSP.1.14.2 Type Conversions

We describe two cases for type conversions

JSP.1.14.2.1 Conversions from String values

A string value can be used to describe a value of a non-String type through a
conversion. Whether the conversion is possible, and, if so, what is it, depends on
a target type.

String values can be used to assign values to a type that has a PropertyEditor

class as indicated in the JavaBeans specification. When that is the case, the setAs-

CORE SYNTAX AND SEMANTICS1-60

JavaServer Pages 2.0 Specification

Text(String) method is used. A conversion failure arises if the method throws an
IllegalArgumentException.

String values can also be used to assign to the types as listed in Table JSP.1-
11. The conversion applied is that shown in the table.

A conversion failure leads to an error, whether at translation time or request-
time.

These conversions are part of the generic mechanism used to assign values
to attributes of actions: when an attribute value that is not a request-time

Table JSP.1-11 Conversions from string values to target type

Target Type Source String Value

Bean Property As converted by the corresponding PropertyEditor, if any,
using PropertyEditor.setAsText(string-literal) and Proper-
tyEditor.getValue(). If there is no corresponding PropertyEdi-
tor or the PropertyEditor throws an exception, ‘null’ if the
string is empty, otherwise error.

boolean or
Boolean

As indicated in java.lang.Boolean.valueOf(String). This
results in ‘false’ if the String is empty.

byte or Byte As indicated in java.lang.Byte.valueOf(String), or ‘(byte) 0’ if
the string is empty.

char or Character As indicated in String.charAt(0), or ‘(char) 0’ if the string is
empty.

double or Double As indicated in java.lang.Double.valueOf(String), or 0 if the
string is empty.

int or Integer As indicated in java.lang.Integer.valueOf(String), or 0 if the
string is empty.

float or Float As indicated in java.lang.Float.valueOf(String), or 0 if the
string is empty.

long or Long As indicated in java.lang.Long.valueOf(String), or 0 if the
string is empty.

short or Short As indicated in java.lang.Short.valueOf(String), or 0 if the
string is empty.

Object As if new String(string-literal). This results in new String(““)
if the string is empty.

Tag Attribute Interpretation Semantics 1-61

JavaServer Pages 2.0 Specification

attribute is assigned to a given attribute, the conversion described here is used,
using the type of the attribute as the target type. The type of each attribute of the
standard actions is described in this specification, while the types of the
attributes of a custom action are described in its associated Tag Library Descrip-
tor.

A given action may also define additional ways where type/value conver-
sions are used. In particular, Section JSP.5.2 describes the mechanism used for
the setProperty standard action.

JSP.1.14.2.2 Conversions from request-time expressions

Request-time expressions can be assigned to properties of any type. In the
case of scriptlet expressions, no automatic conversions will be performed. In the
case of EL expressions, the rules in Section JSP.2.8, “Type Conversion” must be
followed.

CORE SYNTAX AND SEMANTICS1-62

JavaServer Pages 2.0 Specification

1-63JavaServer Pages 2.0 Specification

C H A P T E R JSP.2
Expression Language

This chapter describes the expression language used by JSP 2.0. The expres-
sioin language is independent of JSP details except for the set of implicit objects.
The language was initially defined by the JSP StandardTag Library (JSTL) 1.0
specification, but is now incorporated in the JSP specification, and extended with
new features. A JSTL maintenance release (JSTL 1.1) aligns itself with the JSP
2.0 version of the language. The JavaServer Faces expert group (JSR-127) is also
considering to use this expression language.

The language semantics are exposed through an API described in the
javax.servlet.jsp.el package. The main use of this API is to implement the JSP 2.0
language in a JSP container, but it may be used by JSP developers, most likely tag
hander authors.

Sections JSP.2.1 and JSP.2.2 describe how the expression language is used in
JSP 2.0 while sections JSP.2.3 to JSP.2.9 provide the generic description of the
expression language. The API to the expression language is described in full in
Chapter JSP.14.

JSP.2.1 Overview

The EL is a simple language based on:

• Available namespace (the PageContext attributes)

• Nested properties and accessors to collections

• Relational, logical and arithmetic operators.

• Extensible functions mapping into static methods in Java classes.

• A set of implicit objects

EXPRESSION LANGUAGE1-64

JavaServer Pages 2.0 Specification

The EL is inspired by both ECMAScript and the XPath expression languages.
The expert groups of JSR-052 and JSR-152 were very reluctant to design yet
another expression language and tried to use each of these languages but both
were found to fall short in different areas. The feedback received from users of
JSTL 1.0 has been very positive.

The EL is available in attribute values for standard and custom actions and
within template text; in both cases the EL is invoked consistently via the construct
${expr}.

The addition of the EL to the JSP technology facilitates much the writing of
script-less JSP pages. These pages can use EL expressions but can’t use Java
scriptlets, Java expressions, or Java declaration elements. This usage pattern can
be enforced through the scripting-invalid JSP configuration element.

JSP.2.2 The Expression Language in JSP 2.0

The expression language is used in a number of places within the JSP 2.0 lan-
guage.

JSP.2.2.1 Expressions and Attribute Values

EL expressions can be used in any attribute that can accept a run-time expres-
sion, be it a standard action or a custom action (see the section below on backward
compatibility issues).

There are three use cases for expressions in attribute values:

• The attribute value contains a single expression construct

<some:tag value="${expr}"/>

In this case, the expression is evaluated and the result is coerced to the at-
tribute's expected type according to the type conversion rules described later.

• The attribute value contains one or more expressions separated or surrounded
by text:

<some:tag value="some${expr}${expr}text${expr}"/>

In this case, the expressions are evaluated from left to right, coerced to Strings
(according to the type conversion rules described later), and concatenated

The Expression Language in JSP 2.0 1-65

JavaServer Pages 2.0 Specification

with any intervening text. The resulting String is then coerced to the attribute's
expected type according to the type conversion rules described later.

• The attribute value contains only text:

<some:tag value="sometext"/>

In this case, the attribute's String value is coerced to the attribute's expected
type according to the type conversion rules described in Section JSP.2.8.
These rules are equivalent to the JSP 1.2 conversions, except that empty
strings are treated differently.

JSP.2.2.1.1 Examples

The following shows a conditional action that uses the EL to test whether a
property of a bean is less than 3.

<c:if test="${bean1.a < 3}">
...
</c:if>

Note that the normal JSP coercion mechanism already allows for:

 <mytags:if test="true" />

There may be literal values that include the character sequence ${. If that is
the case, a literal with that value can be used as shown here:

 <mytags:example code="an expression is ${'${'}expr}" />

The resulting attribute value would then be the string an expression is ${expr}.

JSP.2.2.2 Expressions and Template Text

The EL can be used directly in template text, be it inside the body of a custom or
standard actions or in template text outside of any action. Exceptions are if the body
of the tag is tagdependent, or if EL is turned off (usually for compatibility issues)
explicitly through a directive or implicitly; see below.

The semantics of an EL expression are the same as with Java expressions: the
value is computed and inserted into the current output. In cases where escaping is
desired (for example, to help prevent cross-site scripting attacks), the JSTL core
tag <c:out> can be used. For example:

EXPRESSION LANGUAGE1-66

JavaServer Pages 2.0 Specification

<c:out value=”${anELexpression}” />

JSP.2.2.2.1 Examples

The following shows a custom action where two EL expressions are used to
access bean properties:

<c:wombat>
One value is ${bean1.a} and another is ${bean2.a.c}
</c:wombat>

JSP.2.2.3 Implicit Objects

There are several implicit objects that are available to EL expressions used in
JSP pages. These objects are always available under these names:

• pageContext - the PageContext object

• pageScope - a Map that maps page-scoped attribute names to their values

• requestScope - a Map that maps request-scoped attribute names to their values

• sessionScope - a Map that maps session-scoped attribute names to their values

• applicationScope - a Map that maps application-scoped attribute names to
their values

• param - a Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name))

• paramValues - a Map that maps parameter names to a String[] of all values for
that parameter (obtained by calling ServletRequest.getParameterValues(String

name))

• header - a Map that maps header names to a single String header value (ob-
tained by calling ServletRequest.getHeader(String name))

• headerValues - a Map that maps header names to a String[] of all values for
that header (obtained by calling ServletRequest.getHeaders(String))

• cookie - a Map that maps cookie names to a single Cookie object. Cookies are
retrieved according to the semantics of HttpServletRequest.getCookies(). If the
same name is shared by multiple cookies, an implementation must use the
first one encountered in the array of Cookie objects returned by the getCook-

ies() method. However, users of the cookie implicit object must be aware that
the ordering of cookies is currently unspecified in the servlet specification.

General Syntax of the Expression Language 1-67

JavaServer Pages 2.0 Specification

• initParam - a Map that maps context initialization parameter names to their
String parameter value (obtained by calling ServletContext.getInitParame-

ter(String name))

The following table shows some examples of using these implicit objects:

JSP.2.2.4 Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications
before JSP 2.0, there may be situations where such a pattern appears but the inten-
tion is not to activate EL expression evaluation but rather to pass through the pattern
verbatim. To address this, the EL evaluation machinery can be deactivated as indi-
cated in Section JSP.3.3.2, “Deactivating EL Evaluation”.

JSP.2.2.5 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodology where scripting elements are not allowed. See
Section JSP.3.3.3, “Disabling Scripting Elements” for more details.

JSP.2.3 General Syntax of the Expression Language

JSP containers are required to produce a translation error when a syntactically
invalid EL expression is encountered in an attribute value or within template text.
The syntax of an EL expression is described in detail in this section.

Table JSP.2-1 Examples of Using Implicit Objects

Expression Result

${pageContext.request.requestURI} The request's URI (obtained from HttpS-
ervletRequest)

${sessionScope.profile} The session-scoped attribute named pro-
file (null if not found)

${param.productId} The String value of the productId
parameter, or null if not found

${paramValues.productId} The String[] containing all values of the
productId parameter, or null if not found

EXPRESSION LANGUAGE1-68

JavaServer Pages 2.0 Specification

JSP.2.3.1 Overview

The syntax is quite simple. Variables are accessed by name. A generalized []

operator can be used to access maps, lists, arrays of objects and properties of a Java-
Beans object; the operator can be nested arbitrarily. The . operator can be used as a
convenient shorthand for property access when the property name follows the con-
ventions of Java identifiers, but the [] operator allows for more generalized access.

Relational comparisons are allowed using the standard Java relational
operators. Comparisons may be made against other values, or against boolean (for
equality comparisons only), String, integer, or floating point literals. Arithmetic
operators can be used to compute integer and floating point vlaues. Logical
operators are available.

JSP.2.3.2 Literals

There are literals for boolean, integer, floating point, string, null.

• Boolean - true and false

• Integer - As defined by the IntegerLiteral construct in Section JSP.2.9

• Floating point - As defined by the FloatingPointLiteral construct in
Section JSP.2.9

• String - With single and double quotes - " is escaped as \", ' is escaped as \', and
\ is escaped as \\. Quotes only need to be escaped in a string value enclosed in
the same type of quote

• Null - null

JSP.2.3.3 Errors, Warnings, Default Values

JSP pages are mostly used in presentation, and in that usage, experience sug-
gests that it is most important to be able to provide as good a presentation as possi-
ble, even when there are simple errors in the page. To meet this requirement, the EL
does not provide warnings, just default values and errors. Default values are type-
correct values that are assigned to a subexpression when there is some problem. An
error is an exception thrown (to be handled by the standard JSP machinery).

JSP.2.3.4 Operators "[]" and "."

The EL follows ECMAScript in unifying the treatment of the . and [] operators.

General Syntax of the Expression Language 1-69

JavaServer Pages 2.0 Specification

expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the identifier
identifier-b is used to construct a literal whose value is the identifier, and then the []

operator is used with that value.
To evaluate expr-a[expr-b]:

• Evaluate expr-a into value-a

• If value-a is null, return null.

• Evaluate expr-b into value-b

• If value-b is null, return null.

• If value-a is a Map, List, or array:

■ If value-a is a Map:

• If !value-a.containsKey(value-b) then return null.
• Otherwise, return value-a.get(value-b)

■ If value-a is a List or array:

• Coerce value-b to int (using coercion rules)
• If coercion couldn't be performed: error

• Then, if value-a.get(value-b) or Array.get(value-a, value-b) throws ArrayIn-
dexOutOfBoundsException or IndexOutOfBoundsException: return null

• Otherwise, if value-a.get(value-b) or Array.get(value-a, value-b) throws oth-
er exception, error

• Otherwise, return value-a.get(value-b) or Array.get(value-a, value-b), as ap-
propriate.

• Otherwise (a JavaBeans object), coerce value-b to String

■ If value-b is a readable property of value-a, as per the JavaBeans specifica-
tion:

• If getter throws an exception: error
• Otherwise: return result of getter call

■ Otherwise: error.

JSP.2.3.5 Arithmetic Operators

Arithmetic is provided to act on integer (BigInteger and Long) and floating point
(BigDecimal and Double) values. There are 5 operators:

• Addition: +

• Substraction: -

EXPRESSION LANGUAGE1-70

JavaServer Pages 2.0 Specification

• Multiplication: *

• Division: / and div

• Remainder (modulo): % and mod

The last two operators are available in both syntaxes to be consistent with
XPath and ECMAScript.

The evaluation of arithmetic operators is described in the following sections.
A and B are the evaluation of subexpressions

JSP.2.3.5.1 Binary operators - A {+,-,*} B

• If A and B are null, return (Long) 0

• If A or B is a BigDecimal, coerce both to BigDecimal and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

• If A or B is a Float, Double, or String containing ., e, or E:

■ If A or B is BigInteger, coerce both A and B to BigDecimal and apply operator.

■ Otherwise, coerce both A and B to Double and apply operator

• If A or B is BigInteger, coerce both to BigInteger and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

• Otherwise coerce both A and B to Long and apply operator

• If operator results in exception, error

JSP.2.3.5.2 Binary operator - A {/,div} B

• If A and B are null, return (Long) 0

• If A or B is a BigDecimal or a BigInteger, coerce both to BigDecimal and return
A.divide(B, BigDecimal.ROUND_HALF_UP).

• Otherwise, coerce both A and B to Double and apply operator

• If operator results in exception, error

General Syntax of the Expression Language 1-71

JavaServer Pages 2.0 Specification

JSP.2.3.5.3 Binary operator - A {%,mod} B

• If A and B are null, return (Long) 0

• If A or B is a BigDecimal, Float, Double, or String containing ., e, or E, coerce
both A and B to Double and apply operator

• If A or B is a BigInteger, coerce both to BigInteger and return A.remainder(B).

• Otherwise coerce both A and B to Long and apply operator

• If operator results in exception, error

JSP.2.3.5.4 Unary minus operator - -A

• If A is null, return (Long) 0

• If A is a BigDecimal or BigInteger, return A.negate().

• If A is a String:

■ If A contains ., e, or E, coerce to a Double and apply operator

■ Otherwise, coerce to a Long and apply operator

■ If operator results in exception, error

• If A is Byte, Short, Integer, Long, Float, Double

■ Retain type, apply operator

■ If operator results in exception, error

• Otherwise, error

JSP.2.3.5.5 Relational Operators

The relational operators are:

• == and eq

• != and ne

• < and lt

• > and gt

• <= and le

• >= and ge

EXPRESSION LANGUAGE1-72

JavaServer Pages 2.0 Specification

The second versions of the last 4 operators are made available to avoid having
to use entity references in XML syntax and have the exact same behavior, i.e. <

behaves the same as lt and so on.
The evaluation of relational operators is described in the following sections.

JSP.2.3.5.6 A {<,>,<=,>=,lt,gt,le,ge} B

• If A==B, if operator is <=, le, >=, or ge return true. Otherwise return false

• If A is null or B is null, return false

• If A or B is BigDecimal, coerce both A and B to BigDecimal and use the return
value of A.compareTo(B).

• If A or B is Float or Double coerce both A and B to Double apply operator

• If A or B is BigInteger, coerce both A and B to BigInteger and use the return
value of A.compareTo(B).

• If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long and apply operator

• If A or B is String coerce both A and B to String, compare lexically

• If A is Comparable, then:

■ If A.compareTo (B) throws exception, error.

■ Otherwise use result of A.compareTo(B)

• If B is Comparable, then:

■ If B.compareTo (A) throws exception, error.

■ Otherwise use result of B.compareTo(A)

• Otherwise, error

JSP.2.3.5.7 A {==,!=,eq,ne} B

• If A==B, apply operator

• If A is null or B is null return false for == or eq, true for != or ne.

• If A or B is BigDecimal, coerce both A and B to BigDecimal and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

• If A or B is Float or Double coerce both A and B to Double, apply operator

General Syntax of the Expression Language 1-73

JavaServer Pages 2.0 Specification

• If A or B is BigInteger, coerce both A and B to BigInteger and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

• If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long, apply operator

• If A or B is Boolean coerce both A and B to Boolean, apply operator

• If A or B is String coerce both A and B to String, compare lexically

• Otherwise if an error occurs while calling A.equals(B), error

• Otherwise, apply operator to result of A.equals(B)

JSP.2.3.6 Logical Operators

The logical operators are:

• && and and

• || and or

• ! and not

The evaluation of logical operators is described in the following sections.

JSP.2.3.6.1 Binary operator - A {&&,||,and,or} B

• Coerce both A and B to Boolean, apply operator

The operator stops as soon as the expression can be determined, i.e., A and B
and C and D – if B is false, then only A and B is evaluated.

JSP.2.3.6.2 Unary not operator - {!,not} A

• Coerce A to Boolean, apply operator

JSP.2.3.7 Empty Operator - empty A

The empty operator is a prefix operator that can be used to determine if a value
is null or empty.

To evaluate empty A

EXPRESSION LANGUAGE1-74

JavaServer Pages 2.0 Specification

• If A is null, return true,

• Otherwise, if A is the empty string, then return true.

• Otherwise, if A is an empty array, then return true.

• Otherwise, if A is an empty Map, return true,

• Otherwise, if A is an empty Collection, return true,

• Otherwise return false.

JSP.2.3.8 Conditional Operator - A ? B : C

Evaluate B or C, depending on the result of the evaluation of A.

• Coerce A to Boolean:

■ If A is true, evaluate and return B

■ If A is false, evaluate and return C

JSP.2.3.9 Parentheses

Parentheses can be used to change precedence, as in: ${ (a * (b + c)) }

JSP.2.3.10 Operator Precedence

Highest to lowest, left-to-right.

• [] .

• ()

• - (unary) not ! empty

• * / div % mod

• + - (binary)

• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or

• ? :

Reserved Words 1-75

JavaServer Pages 2.0 Specification

JSP.2.4 Reserved Words

The following words are reserved for the language and should not be used as
identifiers.

and eq gt true instanceof
or ne le false empty
not lt ge null div mod

Note that many of these words are not in the language now, but they may be in
the future, so developers should avoid using these words now.

JSP.2.5 Named Variables

A core concept in the EL is the evaluation of a variable name into an object. The
EL API provides a generalized mechanism, a VariableResolver, that will resolve
names into objects. The default resolver is what is used in the evaluation of EL
expressions in template and attributes. This default resolver provides the implicit
objects mentioned in Section JSP.2.2.3. The default resolver also provides a map for
other identifiers by looking up its value as an attribute, according to the behavior of
PageContext.findAttribute(String) on the pageContext object. For example:

 ${product}

This expression will look for the attribute named product, searching the page,
request, session, and application scopes, and will return its value. If the attribute is
not found, null is returned.

Note that an identifier that matches one of the implicit objects described in the
next section will return that implicit object instead of an attribute value.

See Chapter JSP.14 for further details on the VariableResolver and how it fits
with the evaluation API.

JSP.2.6 Functions

The EL has qualified functions, reusing the notion of qualification from XML
namespaces (and attributes), XSL functions, and JSP custom actions. Functions
are mapped to public static methods in Java classes. In JSP 2.0 the map is
specified in the TLD.

EXPRESSION LANGUAGE1-76

JavaServer Pages 2.0 Specification

JSP.2.6.1 Invocation Syntax

The full syntax is that of qualified n-ary functions:

ns:f(a1,a2, ..., an)

As with the rest of EL, this element can appear in attributes and directly in
template text.

The prefix ns must match the prefix of a tag library that contains a function
whose name and signature matches the function being invoked (f), or a translation
error must occur. If the prefix is omitted, the tag library associated with the default
namespace is used (this is only possible in JSP documents).

In the following standard syntax example, func1 is associated with some-

taglib:

<%@ taglib prefix=”some” uri=”http://acme.com/some-taglib” %>
${some:func1(true)}

In the following JSP document example, both func2 and func3 are associated
with default-taglib:

<some:tag xmlns=”http://acme.com/default-taglib”
xmlns:some=”http://acme.com/some-taglib”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<some:other value=”${func2(true)}”>
${func3(true)}

</some:other>
</some:tag>

JSP.2.6.2 Tag Library Descriptor Information

Each tag library may include zero or more n-ary (static) functions. The Tag
Library Descriptor (TLD) associated with a tag library lists the functions.

Each such function is given a name (as seen in the EL), and a static method in
a specific class that will implement the function. The class specified in the TLD
must be a public class, and must be specified using a fully-qualified class name
(including packages). The specified method must be a public static method in the
specified class, and must be specified using a fully-qualified return type followed
by the method name, followed by the fully-qualified argument types in
parenthesis, separated by commas (see the XML Schema in Appendix JSP.C for a
full description of this syntax). Failure to satisfy these requirements shall result in
a translation-time error.

Functions 1-77

JavaServer Pages 2.0 Specification

A tag library can have only one function element in the same tag library with
the same value for their name element. If two functions have the same name, a
translation-time error shall be generated.

Reference the function element in Section JSP.C.1, “XML Schema for TLD,
JSP 2.0” for how to specify a function in the TLD.

JSP.2.6.3 Example

The following TLD fragment describes a function with name nickname that is
intended to fetch the nickname of the user:

<taglib>
...
<function>

<name>nickname</name>
<function-class>mypkg.MyFunctions</function-class>
<function-signature>

java.lang.String nickName(java.lang.String)
</function-signature>

</function>
</taglib>

The following EL fragment shows the invocation of the function:

<h2>Dear ${my:nickname(user)}</h2>

JSP.2.6.4 Semantics

• If the function has no prefix, the default namespace is used. If the function has
a prefix, assume the namespace as that associated with the prefix.

Let ns be the namespace associated with the function, and f be the name of the
function.

• Locate the TLD associated with ns. If none can be found, this shall be a trans-
lation-time error.

• Locate the function element with a name subelement with value f in that TLD.
If none can be found, this shall be a translation-time error.

• Locate the public class with name equal to the value of the function-class ele-
ment. Locate the public static method with name and signature equal to the

EXPRESSION LANGUAGE1-78

JavaServer Pages 2.0 Specification

value of the function-signature element. If any of these don’t exist, a transla-
tion-time error shall occur..

• Evaluate each argument to the corresponding type indicated in the signature

• Evaluate the public static Java method. The resulting value is the value re-
turned by the method evaluation, or null if the Java method is declared to re-
turn void. If an exception is thrown during the method evaluation, the
exception must be wrapped in an ELException and the ELException must be
thrown.

JSP.2.7 Implicit Objects

The EL defines a set of implicit objects which depends on the context in which
the EL is being used. When an expression references one of these objects by name,
the appropriate object is returned instead of the corresponding attribute. For exam-
ple in the context of JSP pages, ${pageContext} returns the PageContext object,
even if there is an existing pageContext attribute containing some other value. See
Section JSP.2.2.3 for details.

JSP.2.8 Type Conversion

Every expression is evaluated in the context of an expected type. The result of
the expression evaluation may not match the expected type exactly, so the rules
described in the following sections are applied:

JSP.2.8.1 To Coerce a Value X to Type Y

• If X is of a primitive type, Let X’ be the equivalent “boxed form” of X.
Otherwise, Let X’ be the same as X.

• If Y is of a primitive type, Let Y’ be the equivalent “boxed form” of Y.
Otherwise, Let Y’ be the same as Y.

• Apply the rules in Sections JSP.2.8.2-JSP.2.8.6 for coercing X’ to Y’.

• If Y is a primitive type, then the result is found by "unboxing" the result of the
coercion. If the result of the coercion is null, then error.

• If Y is not a primitive type, then the result is the result of the coercion.

Type Conversion 1-79

JavaServer Pages 2.0 Specification

For example, if coercing an int to a String, "box" the int into an Integer and
apply the rule for coercing an Integer to a String. Or if coercing a String to a dou-

ble, apply the rule for coercing a String to a Double, then "unbox" the resulting
Double, making sure the resulting Double isn’t actually null.

JSP.2.8.2 Coerce A to String

• If A is String: return A

• Otherwise, if A is null: return ""

• Otherwise, if A.toString() throws an exception, error

• Otherwise, return A.toString()

JSP.2.8.3 Coerce A to Number type N

• If A is null or "", return 0.

• If A is Character, convert A to new Short((short)a.charValue()), and apply the
following rules.

• If A is Boolean, then error.

• If A is Number type N, return A

• If A is Number, coerce quietly to type N using the following algorithm:

■ If N is BigInteger

• If A is a BigDecimal, return A.toBigInteger()
• Otherwise, return BigInteger.valueOf(A.longValue())

■ If N is BigDecimal,

• If A is a BigInteger, return new BigDecimal(A)
• Otherwise, return new BigDecimal(A.doubleValue())

■ If N is Byte, return new Byte(A.byteValue())

■ If N is Short, return new Short(A.shortValue())

■ If N is Integer, return new Integer(A.intValue())

■ If N is Long, return new Long(A.longValue())

■ If N is Float, return new Float(A.floatValue())

■ If N is Double, return new Double(A.doubleValue())

■ Otherwise, error.

EXPRESSION LANGUAGE1-80

JavaServer Pages 2.0 Specification

• If A is String, then:

■ If N is BigDecimal then:

• If new BigDecimal(A) throws an exception then error.
• Otherwise, return new BigDecimal(A).

■ If N is BigInteger then:

• If new BigInteger(A) throws an exception then error.
• Otherwise, return new BigInteger(A).

■ If N.valueOf(A) throws an exception, then error.

■ Otherwise, return N.valueOf(A).

• Otherwise, error.

JSP.2.8.4 Coerce A to Character

• If A is null or "", return (char) 0

• If A is Character, return A

• If A is Boolean, error

• If A is Number, coerce quietly to type Short, then return a Character whose
numeric value is equivalent to that of a Short.

• If A is String, return A.charAt (0)

• Otherwise, error

JSP.2.8.5 Coerce A to Boolean

• If A is null or "", return false

• Otherwise, if A is a Boolean, return A

• Otherwise. if A is a String, and Boolean.valueOf(A) does not throw an excep-
tion, return it

• Otherwise, error

JSP.2.8.6 Coerce A to Any Other Type T

• If A is null, return null

• If A is assignable to T, coerce quietly

Collected Syntax 1-81

JavaServer Pages 2.0 Specification

• If A is a String, and T has no PropertyEditor:

■ If A is "", return null

■ Otherwise error

• If A is a String and T's PropertyEditor throws an exception:

■ If A is "", return null

■ Otherwise, error

• Otherwise, apply T's PropertyEditor

• Otherwise, error

JSP.2.9 Collected Syntax

The following are the constructs supported by the EL:

Expression ::= Expression1 ExpressionRest?

ExpressionRest ::= ‘?’ Expression ‘:’ Expression

Expression1 ::= Expression BinaryOp Expression
| UnaryExpression

EXPRESSION LANGUAGE1-82

JavaServer Pages 2.0 Specification

BinaryOp ::= 'and'
| ‘&&’
| ‘or’
| ‘||’
| '+'
| '-'
| '*'
| '/'
| 'div'
| '%'
| 'mod'
| '>'
| 'gt'
| '<'
| 'lt'
| '>='
| 'ge'
| '<='
| 'le'
| '=='
| ‘eq’
| ‘!=’
| ‘ne’

UnaryExpression ::= UnaryOp UnaryExpression
| Value

UnaryOp ::= '-'
| ‘!’
| ‘not’
| ‘empty’

Value ::= ValuePrefix
| Value ValueSuffix

ValuePrefix ::= Literal
| '(' Expression ')'
| Identifier except for ImplicitObject
| ImplicitObject
| FunctionInvocation

ValueSuffix ::= ‘.’ Identifier
| ‘[‘ Expression ‘]’

Identifier ::= Java language identifier

Collected Syntax 1-83

JavaServer Pages 2.0 Specification

ImplicitObject ::= 'pageContext'
| ‘pageScope’
| 'requestScope'
| 'sessionScope'
| 'applicationScope'
| 'param'
| 'paramValues'
| 'header'
| 'headerValues'
| 'initParam'
| 'cookie'

FunctionInvocation ::= (Identifier ‘:’)? Identifier ‘(‘
(Expression (‘,’ Expression)*)? ‘)’

Literal ::= BooleanLiteral
| IntegerLiteral
| FloatingPointLiteral
| StringLiteral
| NullLiteral

BooleanLiteral ::= 'true'
| ‘false’

StringLiteral ::= '([^'\]|\'|\\)*'
| "([^”\]|\”|\\)*"
i.e., a string of any characters enclosed by single
or double quotes, where \ is used to escape ', ",
and \. It is possible to use single quotes within
double quotes, and vice versa, without escaping.

IntegerLiteral ::= [‘0’-’9’]+

FloatingPointLiteral ::= ([‘0’-’9’])+ ‘.’ ([‘0’-’9’])* Exponent?
| ‘.’ ([‘0’-’9’])+ Exponent?
| ([‘0’-’9’])+ Exponent?

Exponent ::= [‘e’,’E’] ([‘+’,’-’])? ([‘0’-’9’])+

NullLiteral ::= 'null'

EXPRESSION LANGUAGE1-84

JavaServer Pages 2.0 Specification

Notes

• An identifier is constrained to be a Java identifier - e.g., no -, no /, etc.

• A String only recognizes a limited set of escape sequences, and \ may not ap-
pear unescaped.

• The relational operator for equality is == (double equals).

• The value of an IntegerLiteral ranges from Long.MIN_VALUE to
Long.MAX_VALUE

• The value of a FloatingPointLiteral ranges from Double.MIN_VALUE to Dou-

ble.MAX_VALUE

1-85JavaServer Pages 2.0 Specification

C H A P T E R JSP.3
JSP Configuration

This chapter describes the JSP configuration information, which is specified
in the Web Application Deployment Descriptor in WEB-INF/web.xml. As of Servlet
2.4, the Web Application Deployment Descriptor is defined using XML Schema,
and imports the elements described in Section JSP.B.1, “XML Schema for JSP 2.0
Deployment Descriptor”. See that section for the details on how to specify JSP con-
figuration information in a Web Application.

JSP.3.1 JSP Configuration Information in web.xml

A Web Application can include general JSP configuration information in its
web.xml file that is to be used by the JSP container. The information is described
through the jsp-config element and its subelements.

The jsp-config element is a subelement of web-app that is used to provide
global configuration information for the JSP files in a Web Application. A jsp-con-

fig has two subelements: taglib and jsp-property-group, defining the taglib mapping
and groups of JSP files respectively.

JSP.3.2 Taglib Map

The web.xml file can include an explicit taglib map between URIs and TLD
resource paths described using taglib elements in the Web Application Deployment
descriptor.

The taglib element is a subelement of jsp-config that can be used to provide
information on a tag library that is used by a JSP page within the Web
Application. The taglib element has two subelements: taglib-uri and taglib-location.

JSP CONFIGURATION1-86

JavaServer Pages 2.0 Specification

A taglib-uri element describes a URI identifying a tag library used in the web
application. The body of the taglib-uri element may be either an absolute URI
specification, or a relative URI as in Section JSP.1.2.1. There should be no
entries in web.xml with the same taglib-uri value.

A taglib-location element contains a resource location (as indicated in
Section JSP.1.2.1) of the Tag Library Description File for the tag library.

JSP.3.3 JSP Property Groups

A JSP property group is a collection of properties that apply to a set of files that
represent JSP pages. These properties are defined in one or more jsp-property-group

elements in the Web Application deployment descriptor.
Most properties defined in a JSP property group apply to an entire translation

unit, that is, the requested JSP file that is matched by its URL pattern and all the
files it includes via the include directive. The exception is the page-encoding

property, which applies separately to each JSP file matched by its URL pattern.
The applicability of a JSP property group is defined through one or more URL

patterns. URL patterns use the same syntax as defined in Chapter SRV.11 of the
Servlet 2.4 specification, but are bound at translation time. All the properties in
the group apply to the resources in the Web Application that match any of the
URL patterns. There is an implicit property: that of being a JSP file. JSP Property
Groups do not affect tag files.

If a resource matches a URL pattern in both a <servlet-mapping> and a <jsp-

property-group>, the pattern that is most specific applies (following the same rules
as in the Servlet specification). If the URL patterns are identical, the <jsp-property-

group> takes precedence over the <servlet-mapping>. If at least one <jsp-property-

group> contains the most specific matching URL pattern, the resource is
considered to be a JSP file, and the properties in that <jsp-property-group> apply.
In addition, if a resource is considered to be a JSP file, all include-prelude and
include-coda properties apply from all the <jsp-property-group> elements with
matching URL patterns (see Section JSP.3.3.5).

JSP.3.3.1 JSP Property Groups

A jsp-property-group is a subelement of jsp-config. The properties that can
currently be described in a jsp-property-group include:

JSP Property Groups 1-87

JavaServer Pages 2.0 Specification

• Indicate that a resource is a JSP file (implicit).

• Control disabling of EL evaluation.

• Control disabling of Scripting elements.

• Indicate page Encoding information.

• Prelude and Coda automatic includes.

• Indicate that a resource is a JSP document.

JSP.3.3.2 Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications
before JSP 2.0, there may be situations where such a pattern appears but the inten-
tion is not to activate EL expression evaluation but rather to pass through the pattern
verbatim. To address this, the EL evaluation machinery can be deactivated as indi-
cated in this section.

Each JSP page has a default setting as to whether to ignore EL expressions.
When ignored, the expression is passed through verbatim. The default setting does
not apply to tag files, which always default to evaluating expressions.

The default mode for JSP pages in a Web Application delivered using a
web.xml using the Servlet 2.3 or earlier format is to ignore EL expressions; this
provides for backward compatibility.

The default mode for JSP pages in a Web Application delivered using a
web.xml using the Servlet 2.4 format is to evaluate EL expressions; this
automatically provides the default that most applications want.

The default mode can be explicitly changed by setting the value of the el-

ignored element. The el-ignored element is a subelement of jsp-property-group (see
Section JSP.3.3.1, “JSP Property Groups”). It has no subelements. Its valid values
are true and false.

For example, the following web.xml fragment defines a group that deactivates
EL evaluation for all JSP pages delivered using the .jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

Page authors can override the default mode through the isELIgnored attribute
of the page directive. For tag files, there is no default, but the isELIgnored attribute
of the tag directive can be used to control the EL evaluation settings.

JSP CONFIGURATION1-88

JavaServer Pages 2.0 Specification

Table JSP.3-1 summarizes the EL evaluation settings for JSP pages, and their
meanings:

Table JSP.3-2 summarizes the EL evaluation settings for tag files, and their
meanings:

The EL evaluation setting for a translation unit also affects whether the \$

quote sequence is enabled for template text and attribute values in a JSP page,
document, or tag file. When EL evaluation is disabled, \$ will not be recognized as
a quote, whereas when EL evaluation is enabled, \$ will be recognized as a quote
for $. See Section JSP.1.6, “Quoting and Escape Conventions” and
Section JSP.6.2.2, “Overview of Syntax of JSP Documents” for details.

Table JSP.3-1 EL Evaluation Settings for JSP Pages

JSP Configuration
<el-ignored>

Page Directive
isELIgnored EL Encountered

unspecified unspecified Ignored if <= 2.3 web.xml
Evaluated otherwise.

false unspecified Evaluated

true unspecified Ignored

don’t care false Evaluated

don’t care true Ignored

Table JSP.3-2 EL Evaluation Settings for Tag Files

Tag Directive
isELIgnored EL Encountered

unspecified Evaluated

false Evaluated

true Ignored

JSP Property Groups 1-89

JavaServer Pages 2.0 Specification

JSP.3.3.3 Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups,
may want to follow a methodology where scripting elements are not allowed. Previ-
ous versions of JSP enabled this through the notion of a TagLibraryValidator that
would verify that the elements are not present. JSP 2.0 makes this slightly easier
through a JSP configuration element.

The scripting-invalid element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are true and false. Scripting is enabled by
default. Disabling scripting elements can be done by setting the scripting-invalid

element to true in the JSP configuration.
For example, the following web.xml fragment defines a group that disables

scripting elements for all JSP pages delivered using the .jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<scripting-invalid>true</scripting-invalid>

</jsp-property-group>

Table JSP.3-3 summarizes the scripting settings and their meanings:

JSP.3.3.4 Declaring Page Encodings

The JSP configuration element page-encoding can be used to easily set the
pageEncoding property of a group of JSP pages defined using the jsp-property-

group element. This is only needed for pages in standard syntax, since for
documents in XML syntax the page encoding is determined as described in
section 4.3.3 and appendix F.1 of the XML specification.

The page-encoding element is a subelement of jsp-property-group (see 3.3.1).
It has no subelements. Its valid values are those of the pageEncoding page

Table JSP.3-3 Scripting Settings

JSP Configuration
<scripting-invalid> Scripting Encountered

unspecified Valid

false Valid

true Translation Error

JSP CONFIGURATION1-90

JavaServer Pages 2.0 Specification

directive. It is a translation-time error to name different encodings in the pageEn-

coding attribute of the page directive of a JSP page and in a JSP configuration
element matching the page. It is also a translation-time error to name different
encodings in the prolog / text declaration of the document in XML syntax and in a
JSP configuration element matching the document. It is legal to name the same
encoding through multiple mechanisms.

For example, the following web.xml fragment defines a group that explicitly
assigns Shift_JIS to all JSP pages and included JSP segments in the /ja

subdirectory of the web application:

<jsp-property-group>
<url-pattern>/ja/*</url-pattern>
<page-encoding>Shift_JIS</page-encoding>

</jsp-property-group>

JSP.3.3.5 Defining Implicit Includes

The include-prelude element is an optional subelement of jsp-property-group.
It has no subelements. Its value is a context-relative path that must correspond to
an element in the Web Application. When the element is present, the given path
will be automatically included (as in an include directive) at the beginning of the
JSP page in the jsp-property-group. When there are more than one include-prelude

element in a group, they are to be included in the order they appear. When more
than one jsp-property-group applies to a JSP page, the corresponding include-
prelude elements will be processed in the same order as they appear in the JSP
configuration section of web.xml.

The include-coda element is an optional subelement of jsp-property-group. It
has no subelements. Its value is a context-relative path that must correspond to an
element in the Web Application. When the element is present, the given path will
be automatically included (as in an include directive) at the end of the JSP page in
the jsp-property-group. When there are more than one include-coda element in a
group, they are to be included in the order they appear. When more than one jsp-

property-group applies to a JSP page, the corresponding include-coda elements
will be processed in the same order as they appear in the JSP configuration section
of web.xml. Note that these semantics are in contrast to the way url-patterns are
matched for other configuration elements.

Preludes and codas follow the same rules as statically included JSP segments.
In particular, start tags and end tags must appear in the same file (see
Section JSP.1.3.3).

JSP Property Groups 1-91

JavaServer Pages 2.0 Specification

For example, the following web.xml fragment defines two groups. Together
they indicate that everything in directory /two/ have /WEB-INF/jspf/prelude1.jspf

and /WEB-INF/jspf/prelude2.jspf at the beginning and /WEB-INF/jspf/coda1.jspf and
/WEB-INF/jspf/coda2.jspf at the end, in that order, while other .jsp files only have
/WEB-INF/jspf/prelude1.jspf at the beginning and /WEB-INF/jspf/coda1.jspf at the
end.

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude1.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/coda1.jspf</include-coda>

</jsp-property-group>

<jsp-property-group>
<url-pattern>/two/*</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude2.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/coda2.jspf</include-coda>

</jsp-property-group>

JSP.3.3.6 Denoting XML Documents

The JSP configuration element is-xml can be used to denote that a group of
files are JSP documents, and thus must be interpreted as XML documents.

The is-xml element is a subelement of jsp-property-group (see 3.3.1). It has no
subelements. Its valid values are true and false. When false, the files in the
associated property group are assumed to not be JSP documents, unless there is
another property group that indicates otherwise. The files are still considered to be
JSP pages due to the implicit property given by the <jsp-property-group> element.

For example, the following web.xml fragment defines two groups. The first
one indicates that those files with extension .jspx, which is the default extension
for JSP documents, are instead just plain JSP pages. The last group indicates that
files with extension .svg are actually JSP documents (which most likely are
generating SVG files).

<jsp-property-group>
<url-pattern>*.jspx</url-pattern>
<is-xml>false</is-xml>

</jsp-property-group>

JSP CONFIGURATION1-92

JavaServer Pages 2.0 Specification

<jsp-property-group>
<url-pattern>*.svg</url-pattern>
<is-xml>true</is-xml>

</jsp-property-group>

1-93JavaServer Pages 2.0 Specification

C H A P T E R JSP.4
Internationalization Issues

This chapter describes requirements for internationalization with
JavaServer Pages 2.0 (JSP 2.0).

The JSP specification by itself does not provide a complete platform for
internationalization. It is complemented by functionality provided by the
underlying Java 2 Standard Edition platform, the Servlet APIs, and by tag libraries
such as the JSP Standard Tag Library (JSTL) with its collection of
internationalization and formatting actions. For complete information, see the
respective specifications. References to JSTL are informational - this library is not
required by the JSP 2.0 specification.

Primarily, this specification addresses the issues of character encodings.
The Java programming language represents characters internally using the

Unicode character encoding, which provides support for most languages. As of
J2SE 1.4, the Unicode 3.0 character set is supported. For storage and transmission
over networks, however, many other character encodings are used. The J2SE
platform therefore also supports character conversion to and from other character
encodings. Any Java runtime must support the Unicode transformations UTF-8,
UTF-16BE, and UTF-16LE as well as the ISO-8859-1 (Latin-1) character
encoding, but most implementations support many more. The character encodings
supported by Sun’s Java 2 Runtime Environment version 1.3 and version 1.4
respectively are described at:

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

In JSP pages and in JSP configuration elements, character encodings are
named using the names defined in the IANA charset registry:

INTERNATIONALIZATION ISSUES1-94

JavaServer Pages 2.0 Specification

http://www.iana.org/assignments/character-sets

JSP.4.1 Page Character Encoding

The page character encoding is the character encoding in which the JSP page or
tag file itself is encoded. The character encoding is determined for each file sepa-
rately, even if one file includes another using the include directive
(Section JSP.1.10.3). A detailed algorithm for determining the page character
encoding of a JSP page or tag file can be found in Appendix JSP.D.

For JSP pages in standard syntax, the page character encoding is determined
from the following sources:

• A JSP configuration element page-encoding value whose URL pattern matches
the page.

• The pageEncoding attribute of the page directive of the page. It is a transla-
tion-time error to name different encodings in the pageEncoding attribute of
the page directive of a JSP page and in a JSP configuration element whose
URL pattern matches the page.

• The charset value of the contentType attribute of the page directive. This is
used to determine the page character encoding if neither a JSP configuration
element page-encoding nor the pageEncoding attribute are provided.

• If none of the above is provided, ISO-8859-1 is used as the default character
encoding.

For tag files in standard syntax, the page character encoding is determined
from the pageEncoding attribute of the tag directive of the tag file, or is ISO-8859-

1 if the pageEncoding attribute is not specified.
The pageEncoding and contentType attributes determine the page character

encoding of only the file that physically contains them. Parsers are only required
to take these attributes into consideration for character encoding detection if the
directive appears at the beginning of the page or tag file and if the character
encoding is an extension of ASCII, that is, if byte values 0 to 127 have the same
meaning as in ASCII, at least until the attributes are found. For character
encodings where this is not the case (including UTF-16 and EBCDIC-based
encodings), the JSP configuration element page-encoding should be used.

For JSP documents in XML syntax, the page character encoding is
determined as described in section 4.3.3 and appendix F.1 of the XML
specification. It is legal to also describe the character encoding in a JSP

Response Character Encoding 1-95

JavaServer Pages 2.0 Specification

configuration element page-encoding or a pageEncoding attribute of the page
directive of the document, as long as they are consistent. It is a translation-time
error to name different encodings in two or more of the following: the XML
prolog / text declaration of a JSP document, the pageEncoding attribute of the
page directive of the JSP document, and in a JSP configuration element whose
URL pattern matches the document.

A JSP container must raise a translation-time error if an unsupported page
character encoding is requested.

JSP.4.2 Response Character Encoding

The response character encoding is the character encoding of the response gen-
erated from a JSP page, if that response is in the form of text. It is primarily man-
aged as the javax.servlet.ServletResponse object’s characterEncoding property.

The JSP container determines an initial response character encoding along
with the initial content type for a JSP page and calls ServletResponse.setContent-

Type() with this information before processing the page. JSP pages can set initial
content type and initial response character encoding using the contentType

attribute of the page directive.
The initial response content type is set to the TYPE value of the contentType

attribute of the page directive. If the page doesn’t provide this attribute, the initial
content type is “text/html” for JSP pages in standard syntax and “text/xml” for JSP
documents in XML syntax.

The initial response character encoding is set to the CHARSET value of the
contentType attribute of the page directive. If the page doesn’t provide this
attribute or the attribute doesn’t have a CHARSET value, the initial response
character encoding is determined as follows:

• For documents in XML syntax, it is UTF-8.

• For JSP pages in standard syntax, it is the character encoding specified by the
pageEncoding attribute of the page directive or by a JSP configuration element
page-encoding whose URL pattern matches the page. Only the character en-
coding specified for the requested page is used; the encodings of files included
via the include directive are not taken into consideration. If there’s no such
specification, no initial response character encoding is passed to ServletRe-

sponse.setContentType() - the ServletResponse object’s default, ISO-8859-1, is
used.

INTERNATIONALIZATION ISSUES1-96

JavaServer Pages 2.0 Specification

After the initial response character encoding has been set, the JSP page’s
content can dynamically modify it by calling the ServletResponse object’s set-

CharacterEncoding and setLocale methods directly or indirectly. A number of
JSTL internationalization and formatting actions call ServletResponse.setLo-

cale(), which may affect the response character encoding. See the Servlet and
JSTL specifications for more information.

Note that the response character encoding can only be changed until the
response is committed. Data is sent to the response stream on buffer flushes for
buffered pages, or on encountering the first content (beware of whitespace) on
unbuffered pages. Whitespace is notoriously tricky for JSP Pages in JSP syntax,
but much more manageable for JSP Documents in XML syntax.

JSP.4.3 Request Character Encoding

The request character encoding is the character encoding in which parameters
in an incoming request are interpreted. It is primarily managed as the ServletRe-

quest object’s characterEncoding property.
The JSP specification doesn’t provide functionality to handle the request

character encoding directly. To control the request character encoding from JSP
pages without embedded Java code, the JSTL <fmt:requestEncoding> can be used.

JSP.4.4 XML View Character Encoding

The XML view character encoding is the character encoding used for external-
izing the XML view of a JSP page or tag file.

The XML view character encoding is always UTF-8.

JSP.4.5 Delivering Localized Content

The JSP specification does not mandate any specific approach for structuring
localized content, and different approaches are possible. Two common approaches
are to use a template taglib and pull localized strings from a resource repository, or
to use-per-locale JSP pages. Each approach has benefits and drawbacks. The JSTL
internationalization and formatting actions provide support for retrieving localized
content from resource bundles and thus support the first approach. Some users have
been using transformations on JSP documents to do simple replacement of elements

Delivering Localized Content 1-97

JavaServer Pages 2.0 Specification

by localized strings, thus maintaining JSP syntax with no performance cost at run-
time. Combinations of these approaches also make sense.

INTERNATIONALIZATION ISSUES1-98

JavaServer Pages 2.0 Specification

1-99JavaServer Pages 2.0 Specification

C H A P T E R JSP.5
Standard Actions

This chapter describes the standard actions of JavaServer Pages 2.0 (JSP 2.0).
Standard actions are represented using XML elements with a prefix of jsp (though
that prefix can be redefined in the XML syntax). A translation error will result if the
JSP prefix is used for an element that is not a standard action.

JSP.5.1 <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language
object defined within a given scope and available with a given id with a newly
declared scripting variable of the same id.

When a <jsp:useBean> action is used in an scriptless page, or in an scriptless
context (as in the body of an action so indicated), there are no Java scripting
variables created but instead an EL variable is created.

The jsp:useBean action is quite flexible; its exact semantics depends on the
attributes given. The basic semantic tries to find an existing object using id and
scope. If the object is not found it will attempt to create the object using the other
attributes.

It is also possible to use this action to give a local name to an object defined
elsewhere, as in another JSP page or in a servlet. This can be done by using the
type attribute and not providing class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide
both class and beanName. If type and class are present, class must be assignable
to type (in the Java platform sense). For it not to be assignable is a translation-
time error.

The attribute beanName specifies the name of a Bean, as specified in the
JavaBeans specification. It is used as an argument to the instantiate method in the
java.beans.Beans class. It must be of the form a.b.c, which may be either a class,

STANDARD ACTIONS1-100

JavaServer Pages 2.0 Specification

or the name of a resource of the form a/b/c.ser that will be resolved in the current
ClassLoader. If this is not true, a request-time exception, as indicated in the
semantics of the instantiate method will be raised. The value of this attribute can
be a request-time attribute expression.

The id Attribute

The id=”name” attribute/value tuple in a jsp:useBean action has special meaning
to a JSP container, at page translation time and at client request processing time. In
particular:

• the name must be unique within the translation unit, and identifies the particu-
lar element in which it appears to the JSP container and page.

Duplicate id’s found in the same translation unit shall result in a fatal transla-
tion error.

• The JSP container will associate an object (a JavaBean component) with the
named value and accessed via that name in various contexts through the page-

context object described later in this specification.

The name is also used to expose a variable (name) in the page’s scripting lan-
guage environment. The scope of the scripting language variable is dependent
upon the scoping rules and capabilities of the scripting language used in the
page.
Note that this implies the name value syntax must comply with the variable
naming syntax rules of the scripting language used in the page. Chapter JSP.9
provides details for the case where the language attribute is java.

An example of the scope rules just mentioned is shown next:

<jsp:useBean> 1-101

JavaServer Pages 2.0 Specification

<% { // introduce a new block %>
...
<jsp:useBean id=”customer” class=”com.myco.Customer” />

<%
/*
 * the tag above creates or obtains the Customer Bean
 * reference, associates it with the name “customer” in the
 * PageContext, and declares a Java programming language
 * variable of the same name initialized to the object reference
 * in this block’s scope.
 */
%>
...
<%= customer.getName(); %>
...

<% } // close the block %>

<%
// the variable customer is out of scope now but
// the object is still valid (and accessible via pageContext)
%>

The scope Attribute

The scope=”page|request|session|application” attribute/value tuple is associ-
ated with, and modifies the behavior of the id attribute described above (it has
both translation time and client request processing time semantics). In partic-
ular it describes the namespace, the implicit lifecycle of the object reference
associated with the name, and the APIs used to access this association. For all
scopes, it is illegal to change the instance object so associated, such that its
new runtime type is a subset of the type(s) of the object previously so associ-
ated. See Section JSP.1.8.2 for details on the available scopes.

Semantics

The actions performed in a jsp:useBean action are:

1. An attempt to locate an object based on the attribute values id and scope. The
inspection is done synchronized per scope namespace to avoid non-determin-
istic behavior.

2. A scripting language variable of the specified type (if given) or class (if type

STANDARD ACTIONS1-102

JavaServer Pages 2.0 Specification

is not given) is defined with the given id in the current lexical scope of the
scripting language. The type attribute should be used to specify a Java type that
cannot be instantiated as a JavaBean (i.e. a Java type that is an abstract class,
interface, or a class with no public no-args constructor). If the class attribute is
used for a Java type that cannot be instantiated as a JavaBean, the container
may consider the page invalid, and is recommended to (but not required to)
produce a fatal translation error at translation time, or a java.lang.Instantiation-
Exception at request time. Similarly, if either type or class specify a type that
can not be found, the container may consider the page invalid, and is recom-
mended to (but not required to) produce a fatal translation error at translation
time, or a java.lang.ClassNotFoundException at request time.

3. If the object is found, the variable’s value is initialized with a reference to the
located object, cast to the specified type. If the cast fails, a java.lang.ClassCas-
tException shall occur. This completes the processing of this jsp:useBean ac-
tion.

4. If the jsp:useBean action had a non-empty body it is ignored. This completes
the processing of this jsp:useBean action.

5. If the object is not found in the specified scope and neither class nor beanName
are given, a java.lang.InstantiationException shall occur. This completes the
processing of this jsp:useBean action.

6. If the object is not found in the specified scope, and the class specified names
a non-abstract class that defines a public no-args constructor, then the class is
instantiated. The new object reference is associated with the scripting variable
and with the specified name in the specified scope using the appropriate scope
dependent association mechanism (see PageContext). After this, step 8 is per-
formed.

If the object is not found, and the class is either abstract, an interface, or no pub-
lic no-args constructor is defined therein, then a java.lang.InstantiationExcep-
tion shall occur. This completes the processing of this jsp:useBean action.

7. If the object is not found in the specified scope; and beanName is given, then
the method instantiate of java.beans.Beans will be invoked with the ClassLoad-
er of the servlet object and the beanName as arguments. If the method suc-
ceeds, the new object reference is associated the with the scripting variable and
with the specified name in the specified scope using the appropriate scope de-
pendent association mechanism (see PageContext). After this, step 8 is per-
formed.

8. If the jsp:useBean action has a non-empty body, the body is processed. The
variable is initialized and available within the scope of the body. The text of
the body is treated as elsewhere. Any template text will be passed through to

<jsp:useBean> 1-103

JavaServer Pages 2.0 Specification

the out stream. Scriptlets and action tags will be evaluated.

A common use of a non-empty body is to complete initializing the created
instance. In that case the body will likely contain jsp:setProperty actions and
scriptlets that are evaluated. This completes the processing of this useBean

action.

Examples

In the following example, a Bean with name connection of type
com.myco.myapp.Connection is available after actions on this element, either
because it was already created and found, or because it is newly created.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection” />

In the next example, the timeout property is set to 33 if the Bean was instanti-
ated.

<jsp:useBean id=”connection” class=”com.myco.myapp.Connection”>
<jsp:setProperty name=”connection” property=”timeout” value=”33”>

</jsp:useBean>

In the final example, the object should have been present in the session. If so,
it is given the local name wombat with WombatType. A ClassCastException
may be raised if the object is of the wrong class, and an InstantiationException
may be raised if the object is not defined.

<jsp:useBean id=”wombat” type=”my.WombatType” scope=”session”/>

Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec />

typeSpec ::= class=”className” |
class=”className” type=”typeName” |
type=”typeName” class=”className” |
beanName=”beanName” type=”typeName” |
type=”typeName” beanName=”beanName” |
type=”typeName”

If the action has a body, it is of the form:

STANDARD ACTIONS1-104

JavaServer Pages 2.0 Specification

<jsp:useBean id="name" scope="page|request|session|application" typeSpec >
body

</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is
created. Typically, the body will contain either scriptlets or jsp:setProperty tags
that will be used to modify the newly created object, but the contents of the body
are not restricted.

The <jsp:useBean> tag has the following attributes:

Table JSP.5-1 jsp:useBean Attributes

id The name used to identify the object instance in the
specified scope’s namespace, and also the scripting variable
name declared and initialized with that object reference.
The name specified is case sensitive and shall conform to
the current scripting language variable-naming conventions.

scope The scope within which the reference is available. The
default value is page. See the description of the scope
attribute defined earlier herein. A translation error must
occur if scope is not one of “page”, “request”, “session” or
“application”.

class The fully qualified name of the class that defines the
implementation of the object. The class name is case
sensitive.
If the class and beanName attributes are not specified the
object must be present in the given scope.

beanName The name of a bean, as expected by the instantiate method
of the java.beans.Beans class.
This attribute can accept a request-time attribute expression
as a value.

<jsp:setProperty> 1-105

JavaServer Pages 2.0 Specification

JSP.5.2 <jsp:setProperty>

The jsp:setProperty action sets the values of properties in a bean. The name

attribute that denotes the bean must be defined before this action appears.
There are two variants of the jsp:setProperty action. Both variants set the

values of one or more properties in the bean based on the type of the properties.
The usual bean introspection is done to discover what properties are present, and,
for each, its name, whether it is simple or indexed, its type, and the setter and get-

ter methods. Introspection also indicates if a given property type has a PropertyEd-

itor class.
Properties in a Bean can be set from one or more parameters in the request

object, from a String constant, or from a computed request-time expression.
Simple and indexed properties can be set using jsp:setProperty.

When assigning from a parameter in the request object, the conversions
described in Section JSP.1.14.2.1 are applied, using the target property to
determine the target type.

When assigning from a value given as a String constant, the conversions
described in Section JSP.1.14.2.1 are applied, using the target property to
determine the target type.

When assigning from a value given as a request-time attribute, no type
conversions are applied if a scripting expression is used, as indicated in
Section JSP.1.14.2.2. If an EL expression is used, the type conversions described
in Section JSP.2.8 are performed.

type If specified, it defines the type of the scripting variable
defined.
This allows the type of the scripting variable to be distinct
from, but related to, the type of the implementation class
specified.
The type is required to be either the class itself, a superclass
of the class, or an interface implemented by the class
specified.
The object referenced is required to be of this type,
otherwise a java.lang.ClassCastException shall occur at
request time when the assignment of the object referenced
to the scripting variable is attempted.
If unspecified, the value is the same as the value of the class
attribute.

Table JSP.5-1 jsp:useBean Attributes

STANDARD ACTIONS1-106

JavaServer Pages 2.0 Specification

When assigning values to indexed properties the value must be an array; the
rules described in the previous paragraph apply to the actions.

A conversion failure leads to an error, whether at translation time or request-
time.

Examples

The following two actions set a value from the request parameter values.

<jsp:setProperty name=”request” property=”*” />
<jsp:setProperty name=”user” property=”user” param=”username” />

The following two elemenst set a property from a value

<jsp:setProperty name=”results” property=”col” value=”${i mod 4}”/>
<jsp:setProperty name=”results” property=”row” value=”<%= i/4 %>” />

Syntax

<jsp:setProperty name="beanName" prop_expr />

prop_expr ::=
property="*" |
property=”propertyName”|
property=”propertyName” param="parameterName"|
property=”propertyName” value=”propertyValue”

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as
described in Section JSP.1.14.1.

propertyValue ::= expr_scriptlet1

1. See syntax for expression scriptlet <%= ... %>

<jsp:getProperty> 1-107

JavaServer Pages 2.0 Specification

The <jsp:setProperty> action has the following attributes:

JSP.5.3 <jsp:getProperty>

The <jsp:getProperty> action places the value of a bean instance property, con-
verted to a String, into the implicit out object, from which the value can be displayed
as output. The bean instance must be defined as indicated in the name attribute
before this point in the page (usually via a jsp:useBean action).

The conversion to String is done as in the println methods, i.e. the toString

method of the object is used for Object instances, and the primitive types are
converted directly.

If the object is not found, a request-time exception is raised.

Table JSP.5-2 jsp:setProperty Attributes

name The name of a bean instance defined by a <jsp:useBean>
action or some other action. The bean instance must contain
the property to be set. The defining action must appear
before the <jsp:setProperty> action in the same file.

property The name of the property whose value will be set. If proper-
tyName is set to * then the tag will iterate over the current
ServletRequest parameters, matching parameter names and
value type(s) to property names and setter method type(s),
setting each matched property to the value of the matching
parameter. If a parameter has a value of "", the
corresponding property is not modified.

param The name of the request parameter whose value is given to
a bean property. The name of the request parameter usually
comes from a web form.
If param is omitted, the request parameter name is assumed
to be the same as the bean property name.
If the param is not set in the Request object, or if it has the
value of ““, the jsp:setProperty action has no effect (a noop).
An action may not have both param and value attributes.

value The value to assign to the given property.
This attribute can accept a request-time attribute expression
as a value.
An action may not have both param and value attributes.

STANDARD ACTIONS1-108

JavaServer Pages 2.0 Specification

The value of the name attribute in jsp:setProperty and jsp:getProperty will
refer to an object that is obtained from the pageContext object through its findAt-

tribute method.
The object named by the name must have been “introduced” to the JSP

processor using either the jsp:useBean action or a custom action with an
associated VariableInfo entry for this name. If the object was not introduced in this
manner, the container implementation is recommended (but not required) to raise
a translation error, since the page implementation is in violation of the
specification.

Note – A consequence of the previous paragraph is that objects that are stored
in, say, the session by a front component are not automatically visible to jsp:set-

Property and jsp:getProperty actions in that page unless a jsp:useBean action, or
some other action, makes them visible.

If the JSP processor can ascertain that there is an alternate way guaranteed to
access the same object, it can use that information. For example it may use a
scripting variable, but it must guarantee that no intervening code has invalidated
the copy held by the scripting variable. The truth is always the value held by the
pageContext object.

Examples

<jsp:getProperty name=”user” property=”name” />

Syntax

<jsp:getProperty name=”name” property=”propertyName” />

The attributes are:

Table JSP.5-3 jsp:getProperty Attributes

name The name of the object instance from which the property is
obtained.

property Names the property to get.

<jsp:include> 1-109

JavaServer Pages 2.0 Specification

JSP.5.4 <jsp:include>

A <jsp:include .../> action provides for the inclusion of static and dynamic
resources in the same context as the current page. See Table JSP.1-10 for a sum-
mary of include facilities.

Inclusion is into the current value of out. The resource is specified using a rel-

ativeURLspec that is interpreted in the context of the web application (i.e. it is
mapped).

The page attribute of both the jsp:include and the jsp:forward actions are
interpreted relative to the current JSP page, while the file attribute in an include
directive is interpreted relative to the current JSP file. See below for some
examples of combinations of this.

An included page cannot change the response status code or set headers. This
precludes invoking methods like setCookie. Attempts to invoke these methods will
be ignored. The constraint is equivalent to the one imposed on the include method
of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values
for some parameters in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is
completed.

The flush attribute controls flushing. If true, then, if the page output is buffered
and the flush attribute is given a true value, then the buffer is flushed prior to the
inclusion, otherwise the buffer is not flushed. The default value for the flush
attribute is false.

Examples

<jsp:include page=”/templates/copyright.html”/>

The above example is a simple inclusion of an object. The path is interpreted
in the context of the Web Application. It is likely a static object, but it could be
mapped into, for instance, a servlet via web.xml.

For an example of a more complex set of inclusions, consider the following
four situations built using four JSP files: A.jsp, C.jsp, dir/B.jsp and dir/C.jsp:

STANDARD ACTIONS1-110

JavaServer Pages 2.0 Specification

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <%@ include

file=”C.jsp”%>. In this case the relative specification C.jsp resolves to dir/C.jsp.

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <jsp:include

page=”C.jsp” />. In this case the relative specification C.jsp resolves to dir/

C.jsp.

• A.jsp says <jsp:include page=”dir/B.jsp”/> and dir/B.jsp says <%@ include

file=”C.jsp” %>. In this case the relative specification C.jsp resolves to dir/C.jsp.

• A.jsp says <%@ include file=”dir/B.jsp”%> and dir/B.jsp says <jsp:include

page=”C.jsp”/>. In this case the relative specification C.jsp resolves to C.jsp.

Syntax

<jsp:include page=”urlSpec” flush="true|false"/>

and

<jsp:include page=”urlSpec” flush="true|false">
{ <jsp:param /> }*

</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the
values in the param subelements are used to augment the request for the purposes
of the inclusion.

The valid attributes are:

JSP.5.5 <jsp:forward>

A <jsp:forward page=”urlSpec” /> action allows the runtime dispatch of the cur-
rent request to a static resource, a JSP page or a Java servlet class in the same con-

Table JSP.5-4 jsp:include Atrributes

page The URL is a relative urlSpec as in Section JSP.1.2.1.
Relative paths are interpreted relative to the current JSP
page.
Accepts a request-time attribute value (which must evaluate
to a String that is a relative URL specification).

flush Optional boolean attribute. If the value is true, the buffer is
flushed now. The default value is false.

<jsp:forward> 1-111

JavaServer Pages 2.0 Specification

text as the current page. A jsp:forward effectively terminates the execution of the
current page. The relative urlSpec is as in Section JSP.1.2.1.

The request object will be adjusted according to the value of the page
attribute.

A jsp:forward action may have jsp:param subelements that can provide values
for some parameters in the request to be used for the forwarding.

If the page output is buffered, the buffer is cleared prior to forwarding.
If the page output is buffered and the buffer was flushed, an attempt to

forward the request will result in an IllegalStateException.

If the page output was unbuffered and anything has been written to it, an
attempt to forward the request will result in an IllegalStateException.

Examples

The following action might be used to forward to a static page based on some
dynamic condition.

<% String whereTo = “/templates/”+someValue; %>
<jsp:forward page=’<%= whereTo %>’ />

Syntax

<jsp:forward page=”relativeURLspec” />

and

<jsp:forward page=”urlSpec”>
{ <jsp:param /> }*

</jsp:forward>

This tag allows the page author to cause the current request processing to be
affected by the specified attributes as follows:

Table JSP.5-5 jsp:forward Attributes

page The URL is a relative urlSpec as in Section JSP.1.2.1. Rela-
tive paths are interpreted relative to the current JSP page.
Accepts a request-time attribute value (which must evaluate
to a String that is a relative URL specification).

STANDARD ACTIONS1-112

JavaServer Pages 2.0 Specification

JSP.5.6 <jsp:param>

The jsp:param element is used to provide key/value information. This element
is used in the jsp:include, jsp:forward, and jsp:params elements. A translation error
shall occur if the element is used elsewhere.

When doing jsp:include or jsp:forward, the included page or forwarded page
will see the original request object, with the original parameters augmented with
the new parameters, with new values taking precedence over existing values when
applicable. The scope of the new parameters is the jsp:include or jsp:forward call;
i.e. in the case of an jsp:include the new parameters (and values) will not apply
after the include. This is the same behavior as in the ServletRequest include and
forward methods (see Section 8.1.1 in the Servlet 2.4 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is
specified for forward, the forwarded request shall have A=bar,foo. Note that the
new param has precedence.

The parameter names and values specified should be left unencoded by the
page author. The JSP container must encode the parameter names and values
using the character encoding from the request object when necessary. For
example, if the container chooses to append the parameters to the URL in the
dispatched request, both the names and values must be encoded as per the content
type application/x-www-form-urlencoded in the HTML specification.

Syntax

<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value. name indicates the
name of the parameter, and value, which may be a request-time expression,
indicates its value.

JSP.5.7 <jsp:plugin>

The plugin action enables a JSP page author to generate HTML that contains
the appropriate client browser dependent constructs (OBJECT or EMBED) that will
result in the download of the Java Plugin software (if required) and subsequent exe-
cution of the Applet or JavaBeans component specified therein.

The <jsp:plugin> tag is replaced by either an <object> or <embed> tag, as
appropriate for the requesting user agent, and emitted into the output stream of the

<jsp:plugin> 1-113

JavaServer Pages 2.0 Specification

response. The attributes of the <jsp:plugin> tag provide configuration data for the
presentation of the element, as indicated in the table below.

The <jsp:params> action containing one or more <jsp:param> actions provides
parameters to the Applet or JavaBeans component.

The <jsp:fallback> element indicates the content to be used by the client
browser if the plugin cannot be started (either because OBJECT or EMBED is not
supported by the client browser or due to some other problem). If the plugin can
start but the Applet or JavaBeans component cannot be found or started, a plugin
specific message will be presented to the user, most likely a popup window
reporting a ClassNotFoundException.

The actual plugin code need not be bundled with the JSP container and a
reference to Sun’s plugin location can be used instead, although some vendors
will choose to include the plugin for the benefit of their customers.

Examples

<jsp:plugin type=”applet” code=”Molecule.class” codebase=”/html” >
<jsp:params>

<jsp:param
name=”molecule”
value=”molecules/benzene.mol”/>

</jsp:params>
<jsp:fallback>

<p> unable to start plugin </p>
</jsp:fallback>

</jsp:plugin>

STANDARD ACTIONS1-114

JavaServer Pages 2.0 Specification

Syntax

<jsp:plugin type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ title=”title” }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" }
{ mayscript=’true|false’ } >

{ <jsp:params>
{ <jsp:param name="paramName" value=”paramValue" /> }+

 </jsp:params> }

{ <jsp:fallback> arbitrary_text </jsp:fallback> }
</jsp:plugin>

Table JSP.5-6 jsp:plugin Attributes

type Identifies the type of the component; a bean, or an Applet.

code As defined by HTML spec

codebase As defined by HTML spec

align As defined by HTML spec

archive As defined by HTML spec

height As defined by HTML spec.
Accepts a run-time expression value.

hspace As defined by HTML spec.

jreversion Identifies the spec version number of the JRE the
component requires in order to operate; the default is: 1.2

name As defined by HTML spec

<jsp:params> 1-115

JavaServer Pages 2.0 Specification

JSP.5.8 <jsp:params>

The jsp:params action is part of the jsp:plugin action and can only occur as a
direct child of a <jsp:plugin> action. Using the jsp:params element in any other con-
text shall result in a translation-time error.

The semantics and syntax of jsp:params are described in Section JSP.5.7.

JSP.5.9 <jsp:fallback>

The jsp:fallback action is part of the jsp:plugin action and can only occur as a
direct child of a <jsp:plugin> element. Using the jsp:fallback element in any other
context shall result in a translation-time error.

The semantics and syntax of jsp:fallback are described in Section JSP.5.7.

JSP.5.10 <jsp:attribute>

The <jsp:attribute> standard action has two uses. It allows the page author to
define the value of an action attribute in the body of an XML element instead of in
the value of an XML attribute. It also allows the page author to specify the
attributes of the element being output, when used inside a <jsp:element> action.
The action must only appear as a subelement of a standard or custom action. An
attempt to use it otherwise must result in a translation error. For example, it cannot
be used to specify the value of an attribute for XML elements that are template

vspace As defined by HTML spec

title As defined by the HTML spec

width As defined by HTML spec.
Accepts a run-time expression value.

nspluginurl URL where JRE plugin can be downloaded for Netscape
Navigator, default is implementation defined.

iepluginurl URL where JRE plugin can be downloaded for IE, default
is implementation defined.

mayscript As defined by HTML spec.

Table JSP.5-6 jsp:plugin Attributes

STANDARD ACTIONS1-116

JavaServer Pages 2.0 Specification

text. For custom action invocations, JSP containers must support the use of
<jsp:attribute> for both Classic and Simple Tag Handlers.

The behavior of the <jsp:attribute> standard action varies depending on the
type of attribute being specified, as follows:

• A translation error must occur if <jsp:attribute> is used to define the value of
an attribute of <jsp:attribute>.

• If the enclosing action is <jsp:element>, the value of the name attribute and
the body of the action will be used as attribute name/value pairs in the dynam-
ically constructed element. See Section JSP.5.14 for more details on <jsp:ele-

ment>. Note that in this context, the attribute does not apply to the
<jsp:element> action itself, but rather to the output of the element. That is,
<jsp:attribute> cannot be used to specify the name attribute of the <jsp:ele-

ment> action.

• For custom action attributes of type javax.servlet.jsp.tagext.JspFragment, the
container must create a JspFragment out of the body of the <jsp:attribute> ac-
tion and pass it to the tag handler. This applies for both Classic Tag Handlers
and Simple Tag Handlers. A translation error must result if the body of the
<jsp:attribute> action is not scriptless in this case.

• If the custom action accepts dynamic attributes (Section JSP.7.1.8), and the
name of the attribute is not one explicitly indicated for the tag, then the con-
tainer will evaluate the body of <jsp:attribute> and assign the computed value
to the attribute using the dynamic attribute machinery. Since the type of the at-
tribute is unknown and the body of <jsp:attribute> evaluates to a String, the
container must pass in an instance of String.

• For standard or custom action attributes that accept a request-time expression
value, the Container must evaluate the body of the <jsp:attribute> action and
use the result of this evaluation as the value of the attribute. The body of the
attribute action can be any JSP content in this case. If the type of the attribute
is not String, the standard type conversion rules are applied, as per
Section JSP.1.14.2.1, “Conversions from String values”.

• For standard or custom action attributes that do not accept a request-time ex-
pression value, the Container must use the body of the <jsp:attribute> action as
the value of the attribute. A translation error must result if the body of the
<jsp:attribute> action contains anything but template text.

<jsp:attribute> 1-117

JavaServer Pages 2.0 Specification

If the body of the <jsp:attribute> action is empty, it is the equivalent of
specifying “” as the value of the attribute. Note that after being trimmed, non-
empty bodies can result in a value of ““ as well.

The <jsp:attribute> action accepts a name attribute and a trim attribute. The
name attribute associates the action with one of the attributes the tag handler is
declared to accept, or in the case of <jsp:element> it associates the action with one
of the attributes in the element being output. The optional trim attribute determines
whether the whitespace appearning at the beginning and at the end of the element
body should be discarded or not. By default, the leading and trailing whitespace is
discarded. The Container must trim at translation time only. The Container must
not trim at runtime. For example, if a body contains a custom action that produces
leading or trailing whitespace, that whitespace is preserved regardless of the value
of the trim attribute.

The following is an example of using the <jsp:attribute> standard action to
define an attribute that is evaluated by the container prior to the custom action
invocation. This example assumes the name attribute is declared with type
java.lang.String in the TLD.

<mytag:highlight>
<jsp:attribute name=”text”>

Inline definition.
</jsp:attribute>

</mytag:highlight>

The following is an example of using the <jsp:attribute> standard action within
<jsp:element>, to define which attributes are to be output with that element:

<jsp:element name=”firstname”>
<jsp:attribute name=”name”>Susan</jsp:attribute>

</jsp:element>

This would produce the following output:

<firstname name=”Susan”/>

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:attribute> standard action.

STANDARD ACTIONS1-118

JavaServer Pages 2.0 Specification

The attributes are:

JSP.5.11 <jsp:body>

Normally, the body of a standard or custom action invocation is defined implic-
itly as the body of the XML element used to represent the invocation. The body of a
standard or custom action can also be defined explicitly using the <jsp:body> stan-
dard action. This is required if one or more <jsp:attribute> elements appear in the
body of the tag.

If one or more <jsp:attribute> elements appear in the body of a tag invocation
but no <jsp:body> element appears or an empty <jsp:body> element appears, it is
the equivalent of the tag having an empty body.

It is also legal to use the <jsp:body> standard action to supply bodies to
standard actions, for any standard action that accepts a body (except for

Table JSP.5-7 Attributes for the <jsp:attribute> standard action

name (required) If not being used with <jsp:element>, then if the
action does not accept dynamic attributes, the name must
match the name of an attribute for the action being invoked,
as declared in the Tag Library Descriptor for a custom
action, or as specified for a standard action, or a translation
error will result. Except for when used with <jsp:element>,
a translation error will result if both an XML element
attribute and a <jsp:attribute> element are used to specify
the value for the same attribute.
The value of name can be a QName. If so, a translation
error must occur if the prefix does not match that of the
action it applies to, unless the action supports dynamic
attributes, or unless the action is <jsp:element>.
When used with <jsp:element>, this attribute specifies the
name of the attribute to be included in the generated
element.

trim (optional) Valid values are true and false. If true, the
whitespace, including spaces, carriage returns, line feeds,
and tabs, that appears at the beginning and at the end of the
body of the <jsp:attribute> action will be ignored by the JSP
compiler. If false the whitespace is not ignored. Defaults to
true.

<jsp:invoke> 1-119

JavaServer Pages 2.0 Specification

<jsp:body>, <jsp:attribute>, <jsp:scriptlet>, <jsp:expression>, and <jsp:declara-

tion>).
The body standard action accepts no attributes.

JSP.5.12 <jsp:invoke>

The <jsp:invoke> standard action can only be used in tag files (see
Chapter JSP.8, “Tag Files”), and must result in a translation error if used in a JSP.
It takes the name of an attribute that is a fragment, and invokes the fragment,
sending the output of the result to the JspWriter, or to a scoped attribute that can be
examined and manipulated. If the fragment identified by the given name is null,
<jsp:invoke> will behave as though a fragment was passed in that produces no
output.

JSP.5.12.1 Basic Usage

The most basic usage of this standard action will invoke a fragment with the
given name with no parameters. The fragment will be invoked using the JspFrag-

ment.invoke method, passing in null for the Writer parameter so that the results
will be sent to the JspWriter of the JspContext associated with the JspFragment.
The following is an example of such a basic fragment invocation:

<jsp:invoke fragment=”frag1”/>

JSP.5.12.2 Storing Fragment Output

It is also possible to invoke the fragment and send the results to a scoped
attribute for further examination and manipulation. This can be accomplished by
specifying the var or varReader attribute in the action. In this usage, the fragment
is invoked using the JspFragment.invoke method, but a custom java.io.Writer is
passed in instead of null.

If var is specified, the container must ensure that a java.lang.String object is
made available in a scoped attribute with the name specified by var. The String

must contain the content sent by the fragment to the Writer provided in the Jsp-

Fragment.invoke call.
If varReader is specified, the container must ensure that a java.io.Reader

object is constructed and is made available in a scoped attribute with the name
specified by varReader. The Reader object can then be passed to a custom action
for further processing. The Reader object must produce the content sent by the

STANDARD ACTIONS1-120

JavaServer Pages 2.0 Specification

fragment to the provided Writer. The Reader must also be resettable. That is, if its
reset method is called, the result of the invoked fragment must be able to be read
again without re-executing the fragment.

An optional scope attribute indicates the scope of the resulting scoped
variable.

The following is an example of using var or varReader and the scope attribute:

<jsp:invoke fragment=”frag2” var=”resultString” scope=”session”/>

<jsp:invoke fragment=”frag3” varReader=”resultReader” scope=”page”/>

JSP.5.12.3 Providing a Fragment Access to Variables

JSP fragments have access to the same page scope variables as the page or tag
file in which they were defined (in addition to variables in the request, session, and
application scopes). Tag files have access to a local page scope, separate from the
page scope of the calling page. When a tag file invokes a fragment that appears in
the calling page, the JSP container provides a way to synchronize variables
between the local page scope in the tag file and the page scope of the calling page.
For each variable that is to be synchronized, the tag file author must declare the
variable with a scope of either AT_BEGIN or NESTED. The container must then
generate code to synchronize the page scope values for the variable in the tag file
with the page scope equivalent in the calling page or tag file. The details of how
variables are synchronized can be found in Section JSP.8.9.

The following is an example of a tag file providing a fragment access to a
variable:

<%@ variable name-given=”x” scope=”NESTED” %>
...
<c:set var=”x” value=”1”/>
<jsp:invoke fragment=”frag4”/>

A translation error shall result if the <jsp:invoke> action contains a non-empty
body.

See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax
definition of the <jsp:invoke> standard action.

<jsp:doBody> 1-121

JavaServer Pages 2.0 Specification

The attributes are:

JSP.5.13 <jsp:doBody>

The <jsp:doBody> standard action can only be used in tag files (see
Chapter JSP.8, “Tag Files”), and must result in a translation error if used in a JSP.
It invokes the body of the tag, sending the output of the result to the JspWriter, or
to a scoped attribute that can be examined and manipulated.

The <jsp:doBody> standard action behaves exactly like <jsp:invoke>, except
that it operates on the body of the tag instead of on a specific fragment passed as
an attribute. Because it always operates on the body of the tag, there is no name

attribute for this standard action. The var, varReader, and scope attributes are all

Table JSP.5-8 Attributes for the <jsp:invoke> standard action

fragment (required) The name used to identify this fragment during
this tag invocation.

var (optional) The name of a scoped attribute to store the result
of the fragment invocation in, as a java.lang.String object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the fragment goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the fragment invocation in, as a java.io.Reader object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the result
of the fragment invocation goes directly to the JspWriter, as
described above.

scope (optional) The scope in which to store the resulting
variable. A translation error must result if the value is not
one of page, request, session, or application. A translation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in a session. A container
must throw an IllegalStateException at runtime if scope is
session and the calling page does not participate in a
session. Defaults to page.

STANDARD ACTIONS1-122

JavaServer Pages 2.0 Specification

supported with the same semantics as for <jsp:invoke>. Fragments are provided
access to variables the same way for <jsp:doBody> as they are for <jsp:invoke>. If
no body was passed to the tag, <jsp:doBody> will behave as though a body was
passed in that produces no output.

The body of a tag is passed to the simple tag handler as a JspFragment object.
A translation error shall result if the <jsp:doBody> action contains a non-

empty body.
See Section JSP.1.3.10, “JSP Syntax Grammar” for the formal syntax

definition of the <jsp:doBody> standard action.
The attributes are:

JSP.5.14 <jsp:element>

The jsp:element action is used to dynamically define the value of the tag of an
XML element. This action can be used in JSP pages, tag files and JSP documents.

Table JSP.5-9 Attributes for the <jsp:doBody> standard action

var (optional) The name of a scoped attribute to store the result
of the body invocation in, as a java.lang.String object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader are specified, the
result of the body goes directly to the JspWriter, as
described above.

varReader (optional) The name of a scoped attribute to store the result
of the body invocation in, as a java.io.Reader object. A
translation error must occur if both var and varReader are
specified. If neither var nor varReader is specified, the result
of the body invocation goes directly to the JspWriter, as
described above.

scope (optional) The scope in which to store the resulting
variable. A translation error must result if the value is not
one of page, request, session, or application. A translation
error will result if this attribute appears without specifying
either the var or varReader attribute as well. Note that a
value of session should be used with caution since not all
calling pages may be participating in a session. A container
must throw an IllegalStateException at runtime if scope is
session and the calling page does not participate in a
session. Defaults to page.

<jsp:element> 1-123

JavaServer Pages 2.0 Specification

This action has an optional body; the body can use the jsp:attribute and jsp:body

actions.

A jsp:element action has one mandatory attribute, name, of type String. The
value of the attribute is used as that of the tag of the element generated.

Examples

The following example generates an XML element whose name depends on
the result of an EL expression, content.headerName. The element has an
attribute, lang, and the value of the attribute is that of the expression con-
tent.lang. The body of the element is the value of the expression content.body.

<jsp:element
name=”${content.headerName}”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:attribute name=”lang”>${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

The next example fragment shows that jsp:element needs no children. The
example generates an empty element with name that of the value of the
expression myName.

<jsp:element name=”${myName}”/>

Syntax

The jsp:element action may have a body. Two forms are valid, depending on
whether the element is to have attributes or not. In the first form, no attributes are
present:

<jsp:element name="name">
optional body

</jsp:element>

In the second form, zero or more attributes are requested, using jsp:attribute

and jsp:body, as appropriate.

<jsp:element name="name">
jsp:attribute*
jsp:body?

</jsp:element>

STANDARD ACTIONS1-124

JavaServer Pages 2.0 Specification

The one valid, mandatory, attribute of jsp:element is its name. Unlike other
standard actions, the value of the name attribute must be given as an XML-style
attribute and cannot be specified using <jsp:attribute> This is because
<jsp:attribute> has a special meaning when used in the body of <jsp:element>. See
Section JSP.5.10 for more details..

JSP.5.15 <jsp:text>

A jsp:text action can be used to enclose template data in a JSP page, a JSP doc-
ument, or a tag file. A jsp:text action has no attributes and can appear anywhere that
template data can. Its syntax is:

<jsp:text> template data </jsp:text>

The interpretation of a jsp:text element is to pass its content through to the
current value of out. This is very similar to the XSLT xsl:text element.

Examples

The following example is a fragment that could be in both a JSP page or a JSP
document.

<jsp:text>
This is some content

</jsp:text>

Expressions may appear within jsp:text, as in the next example, where the
expression foo.content is evaluated and the result is inserted.

<jsp:text>
This is some content: ${foo.content}

</jsp:text>

No subelements may appear within jsp:text; for example the following frag-

Table JSP.5-10 Attributes for the <jsp:element> standard action

name (required) The value of name is that of the element
genreated. The name can be a QName; JSP 2.0 places no
constraints on this value: it is accepted as is. A request-time
attribute value may be used for this attribute.

<jsp:output> 1-125

JavaServer Pages 2.0 Specification

ment is invalid and must generate a translation error.

<jsp:text>
This is some content: <jsp:text>foo</jsp:text>

</jsp:text>

When within a JSP document, of course, the body content needs to
additionally conform to the constraints of being a well-formed XML document, so
the following example, although valid in a JSP page is invalid in a JSP document:

<jsp:text>
This is some content: ${foo.content > 3}

</jsp:text>

The same example can be made legal, with no semantic changes, by using gt
instead of > in the expression; i.e. ${foo.content gt 3}.

In an JSP document, CDATA sections can also be used to quote,
uninterpreted, content, as in the following example:

<jsp:text>
<![CDATA[<mumble></foobar>]]>

</jsp:text>

Syntax

The jsp:text action has no attributes. The action may have a body. The body
may not have nested actions nor scripting elements. The body may have EL
expressions. The syntax is of the form:

<jsp:text>
optional body

</jsp:text>

JSP.5.16 <jsp:output>

The jsp:output action can only be used in JSP documents and in tag files in
XML syntax, and a translation error must result if used in a standard syntax JSP or
tag file. This action is used to modify some properties of the output of a JSP docu-
ment or a tag file. In JSP 2.0 there are four properties that can be specified, all of
which affect the output of the XML prolog.

STANDARD ACTIONS1-126

JavaServer Pages 2.0 Specification

The omit-xml-declaration property allows the page author to adjust whether an
XML declaration is to be inserted at the beginning of the output. Since XML
declarations only make sense for when the generated content is XML, the default
value of this property is defined so that it is unnecessary in most cases.

The omit-xml-declaration property is of type String and the valid values are
“yes”, “no”, “true” and “false”. The name, values and semantics mimic that of the
xsl:output element in the XSLT specification: if a value of “yes” or “true” is given,
the container will not add an XML declaration; if a value of “no” or “false” is
given, the container will add an XML declaration.

The default value for a JSP document that has a jsp:root element is “yes”. The
default value for JSP documents without a jsp:root element is “no”.

The default value for a tag file in XML syntax is always “yes”. If the value is
“false” or “no” the tag file will emit an XML declaration as its first content.

The generated XML declaration is of the form:

<?xml version=”1.0” encoding=”encodingValue” ?>

Where encodingValue is the response character encoding, as determined in
Section JSP.4.2 .

The doctype-root-element, doctype-system and doctype-public properties allow
the page author to specify that a DOCTYPE be automatically generated in the
XML prolog of the output. Without these properties, the DOCTYPE would need
to be output manually via a <jsp:text> element before the root element of the JSP
document, which is inconvenient.

A DOCTYPE must be automatically output if and only if the doctype-system

element appears in the translation unit as part of a <jsp:output> action. The doc-

type-root-element must appear and must only appear if the doctype-system

property appears, or a translation error must occur. The doctype-public property is
optional, but must not appear unless the doctype-system property appears, or a
translation error must occur.

The DOCTYPE to be automatically output, if any, is statically determined at
translation time. Multiple occurrences of the doctype-root-element, doctype-sys-

tem or doctype-public properties will cause a translation error if the values for the
properties differ from the previous occurrence.

The DOCTYPE that is automatically output, if any, must appear immediately
before the first element of the output document. The name following
<!DOCTYPE must be the value of the doctype-root-element property. If a doctype-

public property appears, then the format of the generated DOCTYPE is:

<jsp:output> 1-127

JavaServer Pages 2.0 Specification

<!DOCTYPE nameOfRootElement PUBLIC “doctypePublic” “doctypeSystem”>

If a doctype-public property does not appear, then the format of the generated
DOCTYPE is:

<!DOCTYPE nameOfRootElement SYSTEM “doctypeSystem”>

Where nameOfRootElement is the value of the doctype-root-element property,
doctypePublic is the value of the doctype-public attribute, and doctypeSystem is the
value of the doctype-system property.

The values for doctypePublic and doctypeSystem must be enclosed in either
single or double quotes, depending on the value provided by the page author. It is
the responsibility of the page author to provide a syntactically-valid URI as per
the XML specification (see http://www.w3.org/TR/REC-xml#dt-sysid).

Examples

The following JSP document (with an extension of .jspx or with <is-xml> set
to true in the JSP configuration):

<?xml version=”1.0” encoding=”EUC-JP” ?>
<hello></hello>

generates an XML document as follows:

<?xml version=”1.0” encoding=”UTF-8” ?>
<hello></hello>

The following JSP document is like the previous one, except that the XML
declaration is omited. A typical use would be where the XML fragment is to
be included within another document.

<?xml version=”1.0” encoding=”EUC-JP” ?>
<hello>

<jsp:output
xmlns:jsp=”http://java.sun.com/JSP/Page”
omit-xml-declaration=”true”/>

</hello>

The following JSP document is equivalent but uses jsp:root instead of jsp:out-

put.

STANDARD ACTIONS1-128

JavaServer Pages 2.0 Specification

<?xml version=”1.0” encoding=”EUC-JP” ?>
<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0”>

<hello></hello>
</jsp:root>

The following JSP document specifies both a doctype-public and a doctype-

system:

<?xml version=”1.0” encoding=”UTF-8” ?>
<html xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:output doctype-root-element=”html”
doctype-public=”-//W3C//DTD XHTML Basic 1.0//EN”
doctype-system=”http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd” />

<body>
<h1>Example XHTML Document</h1>

</body>
</html>

and generates and XML document as follows:

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>
<html><body><h1>Example XHTML Document</h1></body></html>

The following JSP document omits the doctype-public and explicitly omits the
XML declaration:

<?xml version=”1.0” encoding=”UTF-8” ?>
<elementA>

<jsp:output omit-xml-declaration=”true”
doctype-root-element=”elementA”
doctype-system=”test.dtd” />

Element body goes here.
</elementA>

and generates an XML document as follows:

<!DOCTYPE elementA SYSTEM “test.dtd”>
<elementA>Element body goes here.</elementA>

Other Standard Actions 1-129

JavaServer Pages 2.0 Specification

Syntax

The jsp:output action cannot have a body. The <jsp:output> action has the
following syntax:

<jsp:output (omit-xml-declaration=”yes|no|true|false”) { doctypeDecl } />

doctypeDecl ::= (doctype-root-element=”rootElement”
doctype-public=”PubidLiteral”
doctype-system=”SystemLiteral”)

| (doctype-root-element=”rootElement”
doctype-system=”SystemLiteral”)

The following are the valid attributes of jsp:output:

JSP.5.17 Other Standard Actions

Chapter JSP.6 defines several other standard actions that are either convenient or
needed to describe JSP pages with an XML document, some of which are available
in all JSP pages. They are:

• <jsp:root>, defined in Section JSP.6.3.2.

• <jsp:declaration>, defined in Section JSP.6.3.7.

Table JSP.5-11 Attribute for the <jsp:output> standard action

omit-xml-declaration (optional) Indicates whether to omit the generation of an
XML declaration. Acceptable values are “true”, “yes”,
“false” and “no”.

doctype-root-element (optional) Must be specified if and only if doctype-system
is specified or a translation error must occur. Indicates the
name that is to be output in the generated DOCTYPE
declaration.

doctype-system (optional) Specifies that a DOCTYPE declaration is to be
generated and gives the value for the System Literal.

doctype-public (optional) Must not be specified unless doctype-system is
specified. Gives the value for the Public ID for the
generated DOCTYPE.

STANDARD ACTIONS1-130

JavaServer Pages 2.0 Specification

• <jsp:scriptlet>, defined in Section JSP.6.3.7.

• <jsp:expression>, defined in Section JSP.6.3.7.

1-131JavaServer Pages 2.0 Specification

C H A P T E R JSP.6
JSP Documents

This chapter introduces two concepts related to XML and JSP: JSP docu-
ments and XML views. This chapter provides a brief overview of the two concepts
and their relationship and also provides the details of JSP documents. The details of
the XML view of a JSP document are described in Chapter JSP.10.

JSP.6.1 Overview of JSP Documents and of XML Views

A JSP document is a JSP page written using XML syntax. JSP documents
need to be described as such, either implicitly or explicitly, to the JSP container,
which will then process them as XML documents, checking for well-formedness
and applying requests like entity declarations, if present. JSP documents are used
to generate dynamic content using the standard JSP semantics.

Here is a simple JSP document:

<table>
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">

<row>${counter}</row>
</c:forEach>

</table>

This well-formed, namespace-aware XML document generates, using the JSP
standard tag library, an XML document that has <table> as the root element. That
element has 3 <row> subelements containing values 1, 2 and 3. See
Section JSP.6.4 for more details of this and other examples.

JSP DOCUMENTS1-132

JavaServer Pages 2.0 Specification

The design of JSP documents is focused on the generation of dynamic XML
content, in any of its many uses, but JSP documents can be used to generate any
dynamic content.

Some of the syntactic elements described in Chapter 1 are not legal XML; this
chapter describes alternative syntaxes for those elements that are aligned with the
XML syntax. The alternative syntaxes can be used in JSP documents; most of
them (jsp:output and jsp:root are exceptions) can also be used in JSP pages in JSP
syntax. As it will be described later, the alternative syntax is also used in the XML
view of JSP pages.

JSP documents can be used in a number of ways, including:

• JSP documents can be passed directly to the JSP container; this is becoming
more important as more and more content is authored as XML, be it in an
XML-based languages like XHTML or SVG, or for the exchange of docu-
ments in applications like Web Services. The generated content may be sent
directly to a client, or it may be part of some XML processing pipeline.

• JSP documents can be manipulated by XML-aware tools.

• A JSP document can be generated from a textual representation by applying
an XML transformation, like XSLT.

• A JSP document can be generated automatically, say by serializing some ob-
jects

Tag files can also be authored using XML syntax. The rules are very similar to
that of JSP documents; see Section JSP.8.6 for more details.

The XML view of a JSP page is an XML document that is derived from the
JSP page following a mapping defined later in this chapter.. The XML view of a
JSP page is intended to be used for validating the JSP page against some
description of the set of valid pages. Validation of the JSP page is supported in the
JSP 2.0 specification through a TagLibraryValidator class associated with a tag
library. The validator class acts on a PageData object that represents the XML
view of the JSP page (see, for example, Section JSP.7.4.1.2)

Figure JSP.6-1 below depicts the relationship between the concepts of JSP
pages, JSP documents and XML views. Two phases are involved: the Translation
phase, where JSP pages, in either syntax, are exposed to Tag Library Validators,
via their XML view, and the Request Processing phase, where requests are
processed to produce responses.

JSP Documents 1-133

JavaServer Pages 2.0 Specification

Figure JSP.6-1 Relationship between JSP Pages and XML views of JSP pages.

JSP documents are used by JSP page authors. They can be authored directly,
using a text editor, through an XML editing tool, or through a JSP page authoring
tool that is aware of the XML syntax. Any JSP page author that is generating
XML content should consider the use of JSP documents. In contrast, the XML
view of a JSP page is a concept internal to the JSP container and is of interest only
to Tag Library Authors and to implementors of JSP containers.

JSP.6.2 JSP Documents

A JSP document is a JSP page that is a namespace-aware XML document and
that is identified as a JSP document to the JSP container.

JSP.6.2.1 Identifying JSP Documents

A JSP document can be identified as such in three ways:

JSP Pages

REQUEST PROCESSING

TRANSLATION PHASE

JSP
Syntax

XML
Syntax

XML
View

PHASE

JSP

TLV1 - ERRORS OR OK

TLV2 - ERRORS OR OK

Implementation
Class

Request

Response

JSP DOCUMENTS1-134

JavaServer Pages 2.0 Specification

• If there is a <jsp-property-group> that explicitly indicates, through the <is-xml>

element, whether a given file is a JSP document, then that indication overrides
any other determination. Otherwise,

• If this web application is using a version 2.4 web.xml, and if the extension is
.jspx, then the file is a JSP document. Otherwise,

• If the file is explicitly or implicitly identified as a JSP page and the top element
is a jsp:root element then the file is identified as a JSP document. This behavior
provides backwards compatibility with JSP 1.2.

It is a translation-time error for a file that is identified as a JSP document to
not be a well-formed, namespace-aware, XML document.

See Section JSP.8.6 for details on identifying tag files in XML syntax.

JSP.6.2.2 Overview of Syntax of JSP Documents

A JSP document may or not have a <jsp:root> as its top element; <jsp:root>

was mandatory in JSP 1.2, but we expect most JSP documents in JSP 2.0 not to
use it.

JSP documents identify standard actions through the use of a well-defined
URI in its namespace; although in this chapter the prefix jsp is used for the
standard actions, any prefix is valid as long as the correct URI identifying JSP 2.0
standard actions is used. Custom actions are identified using the URI that
identifies their tag library; taglib directives are not required and cannot appear in a
JSP document.

A JSP document can use XML elements as template data; these elements may
have qualified names (and thus be in a namespace), or be unqualified.

The <jsp:text> element can be used to define some template data verbatim.
Since a JSP document must be a valid XML document, there are some JSP

elements that can’t be used in a JSP document. The elements that can be used are:

• JSP directives and scripting elements in XML syntax.

• EL expressions in the body of elements and in attribute values.

• All JSP standard actions described in Chapter JSP.1.

• The jsp:root, jsp:text, and jsp:output elements.

• Custom action elements

• Template data described using jsp:text elements.

• Template data described through XML fragments.

JSP Documents 1-135

JavaServer Pages 2.0 Specification

Scriptlet expressions used to specify request-time attribute values use a
slightly different syntax in JSP documents than in non JSP documents; rather than
using <%= expr %>, they use %= expr %. The white space around expr is not
needed, and note the missing < and >. The expr, after any applicable quoting as in
any other XML document, is an expression to be evaluated as in
Section JSP.1.14.1.

The mechanisms that enable scripting and EL evaluation in a JSP page apply
also when the page is a JSP document. Just as in the standard syntax, the $ in an
EL expression can be quoted using \$ in both attribute values and template text.
Recall, however, that \\ is not an escape sequence in XML attributes so whereas
within an attribute in standard syntax \\${1+1} would result in \2 (assuming EL is
enabled) or \${1+1} (assuming EL is ignored), in XML syntax \\${1+1} always
results in \${1+1}.

It should be noted that the equivalent JSP document form of
<a href="<%= url %>">, where ’a’ is not a custom action, is:

<jsp:text><![CDATA[</jsp:text><jsp:expression>url</jsp:expres-
sion><jsp:text><![CDATA[">]]></jsp:text>

In the JSP document element , "%= url %" does not
represent a request-time attribute value. That syntax only applies for custom
action elements. This is in contrast to , where "${url}" represents
an EL expression in both JSP pages and JSP documents.

JSP.6.2.3 Semantic Model

The semantic model of a JSP document is unchanged from that of a JSP page
in JSP syntax: JSP pages generate a response stream of characters from template
data and dynamic elements. Template data can be described explicitly through a
jsp:text element, or implicitly through an XML fragment. Dynamic elements are
EL expressions, scripting elements, standard actions or custom actions. Scripting
elements are represented as XML elements with the exception of request-time
attribute expressions, which are represented through special attribute syntax.

The first step in processing a JSP document is to process it as an XML
document, checking for well-formedness, processing entity resolution and, if
applicable, performing validation as described in Section JSP.6.2.4. As part of the
processing XML quoting will be performed, and JSP quoting will not be
performed later.

After these steps, the JSP document will be passed to the JSP container which
will then interpret it as a JSP page.

JSP DOCUMENTS1-136

JavaServer Pages 2.0 Specification

The JSP processing step for a JSP document is as for any other JSP page
except that namespaces are used to identify standard actions and custom action
tag libraries and that run time expressions in attributes use the slightly different
syntax. Note that all the JSP elements that are described in this chapter are valid in
all JSP pages, be they identified as JSP documents or not. This is a backward
compatible change from the behavior in JSP 1.2 to enable gradual introduction of
XML syntax in existing JSP pages.

To clearly explain the processing of whitespace, we follow the structure of the
XSLT specification. The first step in processing a JSP document is to identify the
nodes of the document. Then, all textual nodes that have only white space are
dropped from the document; the only exception are nodes in a jsp:text element,
which are kept verbatim. The resulting nodes are interpreted as described in the
following sections. Template data is either passed directly to the response or it is
mediated through (standard or custom) actions.

Following the XML specification (and the XSLT specification), whitespace
characters are #x20, #x9, #xD, or #xA.

The container will add, in some conditions, an XML declaration to the output;
the rules for this depend on the use of jsp:root and jsp:output; see
Section JSP.6.3.3.

JSP.6.2.4 JSP Document Validation

A JSP Document with a DOCTYPE declaration must be validated by the con-
tainer in the translation phase. Validation errors must be handled the same way as
any other translation phase errors, as described in Section JSP.1.4.1.

JSP 2.0 requires only DTD validation for JSP Documents; containers should
not perform validation based on other types of schemas, such as XML schema.

JSP.6.3 Syntactic Elements in JSP Documents

This section describes the elements in a JSP document.

JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries

JSP documents and tag files in XML syntax use XML namespaces to identify
the standard actions, the directives, and the custom actions. JSP pages and tags in
the JSP syntax cannot use XML namespaces and instead must use the taglib direc-
tive.

Syntactic Elements in JSP Documents 1-137

JavaServer Pages 2.0 Specification

Though the prefix "jsp" is used throughout this specification, it is the
namespace http://java.sun.com/JSP/Page and not the prefix "jsp" that identifies the
JSP standard actions.

An xmlns attribute for a custom tag library of the form xml:prefix=’uri’

identifies the tag library through the uri value. The uri value may be of one of three
forms, either a URN of the form urn:jsptagdir:tagdir, a URN of the form
urn:jsptld:path, or a plain URI.

If the uri value is a URN of the form urn:jsptld:path, then the TLD is
determined following the mechanism described in Section JSP.7.3.2.

If the uri value is a URN of the form urn:jsptagdir:tagdir, then the TLD is
determined following the mechanism described in Section JSP.8.4.

If the uri value is a plain URI, then a path is determined by consulting the
mapping indicated in web.xml extended using the implicit maps in the packaged
tag libraries (Sections JSP.7.3.3 and JSP.7.3.4), as indicated in Section JSP.7.3.6.
In contrast to Section JSP.7.3.6.2, however, a translation error must not be
generated if the given uri is not found in the taglib map. Instead, any actions in the
namespace defined by the uri value must be treated as uninterpreted.

JSP.6.3.2 The jsp:root Element

The jsp:root element can only appear as the root element in a JSP document or
in a tag file in XMLsyntax; otherwise a translation error shall occur. JSP documents
and tag files in XML syntax need not have a jsp:root element as its root element.

The jsp:root element has two main uses. One is to indicate that the JSP file is in
XML syntax, without having to use configuration group elements nor using the
.jspx extension. The other use of the jsp:root element is to accomodate the genera-
tion of content that is not a single XML document: either a sequence of XML docu-
ments or some non-XML content.

A jsp:root element can be used to provide zero or more xmlns attributes that
correspond to namespaces for the standard actions, for custom actions or for
generated template text. Unlike in JSP 1.2, not all tag libraries used within the JSP
document need to be introduced on the root; tag libraries can be incorporated as
needed inside the document using additional xmlns attributes.

The jsp:root element has one mandatory element, the version of the JSP spec
that the page is using.

When jsp:root is used, the container will, by default, not insert an XML
declaration; the default can be changed using the jsp:output element.

JSP DOCUMENTS1-138

JavaServer Pages 2.0 Specification

Examples

The following example generates a sequence of two XML documents. No
XML declaration is generated.

<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0">
<table>foo</table>
<table>bar</table>

</jsp:root>

The following example generates one XML document. An XML declaration
is generated because of the use of jsp:output. The example is mostly instruc-
tional, as the same content could be generated dropping the jsp:root element.

<jsp:root xmlns:jsp=”http://java.sun.com/JSP/Page” version=”2.0">
<jsp:output omit-xml-declaration="no"/>
<table>foo</table>

</jsp:root>

Syntax

The root element has one mandatory attribute, the version of the JSP specifi-
cation the page is using. No other attributes are defined in this element.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
body...

</jsp:root>

The one valid, mandatory, attribute of jsp:root is the version of the JSP
specification used:

JSP.6.3.3 The jsp:output Element

The jsp:output element can be used in JSP documents and in tag files in XML
syntax. The jsp:output element is described in detail in Section JSP.5.16.

Table JSP.6-2 Attributes for the <jsp:root> standard action

version (required) The version of the JSP specification used in this
page. Valid values are "1.2" and "2.0". It is a translation
error if the container does not support the specified version.

Syntactic Elements in JSP Documents 1-139

JavaServer Pages 2.0 Specification

JSP.6.3.4 The jsp:directive.page Element

The jsp:directive.page element defines a number of page dependent properties
and communicates these to the JSP container. This element must be a child of the
root element. Its syntax is:

<jsp:directive.page page_directive_attr_list />

Where page_directive_attr_list is as described in Section JSP.1.10.1.
The interpretation of a jsp:directive.page element is as described in

Section JSP.1.10.1, and its scope is the JSP document and any fragments included
through an include directive.

JSP.6.3.5 The jsp:directive.include Element

The jsp:directive.include element is used to substitute text and/or code at JSP
page translation-time. This element can appear anywhere within a JSP document. Its
syntax is:

<jsp:directive.include file="relativeURLspec” />

The interpretation of a jsp:directive.include element is as in Section JSP.1.10.3.
The XML view of a JSP page does not contain jsp:directive.include elements,

rather the included file is expanded in-place. This is done to simplify validation.

JSP.6.3.6 Additional Directive Elements in Tag Files

Chapter JSP.8 describes the tag, attribute and variable directives, which can be
used in tag files. The XML syntax for these directives is the same as in the XML
view (see Section JSP.10.1.14, Section JSP.10.1.15, and Section JSP.10.1.16 for
details).

JSP.6.3.7 Scripting Elements

The usual scripting elements: declarations, scriptlets and expressions, can be
used in JSP documents, but the only valid forms for these elements in a JSP docu-
ment are the XML syntaxes; i.e. those using the elements jsp:declaration, jsp:script-

let and jsp:expression.
The jsp:declaration element is used to declare scripting language constructs that

are available to all other scripting elements. A jsp:declaration element has no

JSP DOCUMENTS1-140

JavaServer Pages 2.0 Specification

attributes and its body is the declaration itself. The interpretation of a jsp:declara-

tion element is as in Section JSP.1.12.1. Its syntax is:

<jsp:declaration> declaration goes here </jsp:declaration>

The jsp:scriptlet element is used to describe actions to be performed in response
to some request. Scriptlets are program fragments. A jsp:scriptlet element has no
attributes and its body is the program fragment that comprises the scriptlet. The
interpretation of a jsp:scriptlet element is as in Section JSP.1.12.2. Its syntax is:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

The jsp:expression element is used to describe complete expressions in the
scripting language that get evaluated at response time. A jsp:expression element
has no attributes and its body is the expression. The interpretation of a jsp:expres-

sion element is as in Section JSP.1.12.3. Its syntax is:

<jsp:expression> expression goes here </jsp:expression>

JSP.6.3.8 Other Standard Actions

The standard actions of Chapter 5 use a syntax that is consistent with XML syn-
tax and they can be used in JSP documents and in tag files in XML syntax.

JSP.6.3.9 Template Content

A JSP page has no structure on its template content, and, correspondingly,
imposes no constraints on that content. On the other hand, JSP documents have
structure and some constraints are needed.

JSP documents can generate unconstrained content using jsp:text, as defined
in Section JSP.5.15. Jsp:text can be used to generate totally fixed content but it can
also be used to generate some dynamic content, as described in Section JSP.6.3.10
below.

Fixed structured content can be generated using XML fragments. A template
XML element, an element that represents neither a standard action nor a custom
action, can appear anywhere where a jsp:text may appear in a JSP document. The
interpretation of such an XML element is to pass its textual representation to the
current value of out, after the whitespace processing described in
Section JSP.6.2.3.

Syntactic Elements in JSP Documents 1-141

JavaServer Pages 2.0 Specification

For example, if the variable i has the value 3, and the JSP document is of the
form. :

The result is:

JSP.6.3.10 Dynamic Template Content

Custom actions can be used to generate any content, both structured and
unstructured. Future versions of the JSP specification may allow for custom
actions to check constraints on the generated content (see Section JSP.6.5.1) but
the current specification has no standards support for any such constraints.

The most flexible standard mechanism for dynamic content is jsp:element.
jsp:element, together with jsp:attribute and jsp:body can be used to generate any
element. Further details of jsp:element, jsp:attribute and jsp:body are given in
Section JSP.5.14, in Section JSP.5.10 and in Section JSP.5.11. The following
example is from that section

<jsp:element
name=”${content.headerName}”
xmlns:jsp=”http://java.sun.com/JSP/Page”>

<jsp:attribute name=”lang”>${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

In some cases, the dynamic content that is generated can be described as
simple substitutions on otherwise static templates. JSP documents can have XML

Table JSP.6-3 Example 1 - Input

LineNo Source Text

1 <hello>

2 <hi>

3 <jsp:text> hi you all

4 </jsp:text>${i}

5 </hi>

6 </hello>

Table JSP.6-4 Example 1 - Output

LineNo Output Text

1 <hello><hi> hi you all

2 3</hi></hello>

JSP DOCUMENTS1-142

JavaServer Pages 2.0 Specification

templates where EL expressions are used as the values of the body or of attributes.
For instance, the next example uses the expression table.indent as the value of an
attribute, and the expression table.value as that for the body of an element:

<table indent="${table.indent}">
<row>${table.value}</row>

</table>

JSP.6.4 Examples of JSP Documents

The following sections provide several annotated examples of JSP documents.

JSP.6.4.1 Example: A simple JSP document

This simple JSP document generates a table with 3 rows with numeric values 1,
2, 3. The JSP document uses template XML elements intermixed with actions from
the JSP Standard Tag Library.

<table size="${3}">
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="${3}">

<row>${counter}</row>
</c:forEach>

</table>

Some comments:

• The XML template elements are <table> and <row>. The custom action ele-
ment is <c:forEach>

• The JSP standard tag library is introduced through the use of its URI
namespace and the specific prefix used, c in this case, is irrelevant. The prefix
is introduced in a non-root element, and the top element of the document is
still <table>.

• The expression ${counter} is used within the <row> template element.

• The expression ${3} (3 would have been equally good, but an expression is
used for expository reasons) is used within the value of an attribute in both the
XML template element <table> and in the custom action element
<c:forEach>.

Examples of JSP Documents 1-143

JavaServer Pages 2.0 Specification

• The JSP document does not have an xml declaration - we are assuming the en-
coding of the file did not require it, e.g. it used UTF-8, - but the output will in-
clude an xml declaration due to the defaulting rules and to the absence of
jsp:output element directing the container to do otherwise.

The JSP document above does not generate an XML document that uses
namespaces, but the next example does.

JSP.6.4.2 Example: Generating Namespace-aware documents

<table
xmlns="http://table.com/Table1"
size="${3}">
<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="${3}">

<row>${counter}</row>
</c:forEach>

</table>

This example is essentially the same as the one above, except that a default
namespace is introduced in the top element The namespace applies to the unquali-
fied elements: <table> and <row>. Also note that if the default namespace were to
correspond to a custom action, then the elements so effected would be interpreted as
invocations on custom actions or tags.

Although the JSP container understands that this document is a namespace-
aware document. the JSP 2.0 container does not really understand that the
generated content is a well-formed XML document and, as the next example
shows, a JSP document can generate other types of content.

JSP.6.4.3 Example: Generating non-XML documents

<jsp:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>
</jsp:root>

JSP DOCUMENTS1-144

JavaServer Pages 2.0 Specification

This example just generates 123. There is no xml declaration generated because
there is no <jsp:output> element to modify the default rule for when a JSP docu-
ment has <jsp:root>. No additional whitespace is introduced because there is none
within the <jsp:text> element.

The previous example used elements in the JSP namespace. That example
used the jsp prefix, but, unlike with JSP pages in JSP syntax, the name of the
prefix is irrelevant (although highly convenient) in JSP documents: the JSP URI is
the only important indicative and the corrent URI should be used, and introduced
via a namespace attribute.

For example, the same output would be generated with the following modifica-
tion of the previous example:

<wombat:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:wombat="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<wombat:text>${counter}</wombat:text>

</c:forEach>
</wombat:root>

On the other hand, although the following example uses the jsp prefix the URI
used in the namespace attribute is not the JSP URI and the JSP document will
generate as output an XML document with root <jsp:root> using the URI "http://
johnsonshippingproducts.com".

<jsp:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://johnsonshippingproducts.com"
version="2.0">
<c:forEach

var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>
</jsp:root>

Finally, note that, since a JSP document is a well-formed, namespace-aware
document, prefixes, including jsp cannot be used without being introduced
through a namespace attribute.

Examples of JSP Documents 1-145

JavaServer Pages 2.0 Specification

JSP.6.4.4 Example: Using Custom Actions and Tag Files

Custom actions are frequently used within a JSP document to generate portions
of XML content. The JSP specification treats this content as plain text, with no
intepretation nor constraints imposed on it. Good practice, though, suggests abstrac-
tions that organize the content along well-formed fragments.

The following example generates an XHTML document using tag library
abstractions for presentation and data access, made available through the prefixes
u and data respectively.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:u="urn:jsptagdir:/WEB-INF/tags/mylib/"
xmlns:data="http://acme.com/functions">

<c:set var="title" value="Best Movies" />
<u:headInfo title="${title}"/>
<body>

<h1>${title}</h1>
<h2>List of Best Movies</h2>

<c:forEach var="m" varStatus="s" items="data:movieItems()">
${s.index}${m.title}

</c:forEach>

</body>
</html>

For convenience we use the <c:set> JSTL action, which defines variables and
associates values with them. This allows grouping in a single place of definitions
used elsewhere.

The action <u:headInfo> could be implemented either through a custom
action or through a tag. For example, as a tag it could be defined by the following
code:

JSP DOCUMENTS1-146

JavaServer Pages 2.0 Specification

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.tag />
<jsp:directive.attribute name=”title” required="true" />
<head>

<meta http-equiv="content-type"
content="text/html;charset=${pageCharSet}" />

<title>${title}</title>
</head>

</jsp:root>

where pageCharSet is a variable with a value as iso-8859-1.
Note that this tag is a JSP document (because of the jsp:root declaration), and,

as such, it is validated by the container. Also note that the content that is generated
in this case is not using QNames, which means that the interpretation of the
generated elements can be ’captured’ based on the invocation context. That is the
case here, as there is a default namespace active (that of XHTML) where the tag is
being invoked.

JSP.6.5 Possible Future Directions for JSP documents

This section is non-normative. Two features are sketched briefly here to elicit
input that could be used on future versions of the JSP specification.

JSP.6.5.1 Generating XML Content Natively

All JSP 2.0 content is textual, even when using JSP documents to generate
XML content. This is quite acceptable, and even ideal, for some applications, but in
some other applications XML documents are the main data type being manipulated.
For example, the data source may be an XML document repository, perhaps queried
using XQuery, some of the manipulation on this data internal to the JSP page will
use XML concepts (XPath, XSTL operations), and the generated XML document
may be part of some XML pipeline.

In one such application, it is appealing not to transform back and forth
between a stream of characters (text) and a parsed representation of the XML
document. The JSP expert group has explored different approaches on how such
XML-awareness could be added, and a future version of JSP could support this
functionality.

Possible Future Directions for JSP documents 1-147

JavaServer Pages 2.0 Specification

JSP.6.5.2 Schema and XInclude Support

The current specification only requires DTD validation support for JSP docu-
ments. A more flexible schema language, like XML Schema, could be useful and
could be explored by a future version of the JSP specification.

Similarly, future versions of the specification may also consider support for
XInclude.

JSP DOCUMENTS1-148

JavaServer Pages 2.0 Specification

1-149JavaServer Pages 2.0 Specification

C H A P T E R JSP.7
Tag Extensions

This chapter describes the tag library facility for introducing new actions into
a JSP page. The tag library facility includes portable run-time support, a validation
mechanism, and authoring tool support. Both the classic JSP 1.2 style tag extension
mechanism and the newer JSP 2.0 simple tag extension mechanism are described. In
Chapter JSP.8, “Tag Files”, a mechanism for authoring tag extensions using only
JSP syntax is described. This brings the power of tag extensions to page authors that
may not know the Java programming language.

This chapter also provides an overview of the tag library concept. It describes
the Tag Library Descriptor, and the taglib directive. A detailed description of the
APIs involved follows in Chapter JSP.13.

JSP.7.1 Introduction

A Tag Library abstracts functionality used by a JSP page by defining a special-
ized (sub)language that enables a more natural use of that functionality within JSP
pages.

The actions introduced by the Tag Library can be used by the JSP page author
in JSP pages explicitly, when authoring the page manually, or implicitly, when
using an authoring tool. Tag Libraries are particularly useful to authoring tools
because they make intent explicit and the parameters expressed in the action
instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using
the taglib directive. They are available for use in the page using the prefix given by
the directive. An action can create new objects that can be passed to other actions,
or can be manipulated programmatically through a scripting element in the JSP
page.

TAG EXTENSIONS1-150

JavaServer Pages 2.0 Specification

The semantics of a specific custom action in a tag library is described via a tag
handler class which is usually instantiated at runtime by the JSP page implementa-
tion class. When the tag library is well known to the JSP container
(Section JSP.7.3.9), the Container can use alternative implementations as long as the
semantics are preserved.

Tag libraries are portable: they can be used in any legal JSP page regardless of
the scripting language used in that page.

The tag extension mechanism includes information to:

• Execute a JSP page that uses the tag library.

• Author or modify a JSP page.

• Validate the JSP page.

• Present the JSP page to the end user.

A Tag Library is described via the Tag Library Descriptor (TLD), an XML
document that is described below.

JSP.7.1.1 Goals

The tag extension mechanism described in this chapter addresses the following
goals. It is designed to be:

• Portable - An action described in a tag library must be usable in any JSP con-
tainer.

• Simple - Unsophisticated users must be able to understand and use this mech-
anism. Vendors of JSP functionality must find it easy to make it available to
users as actions.

• Expressive - The mechanism must support a wide range of actions, including
nested actions, scripting elements inside action bodies, and creation, use, and
updating of scripting variables.

• Usable from different scripting languages - Although the JSP specification
currently only defines the semantics for scripts in the Java programming lan-
guage, we want to leave open the possibility of other scripting languages.

• Built upon existing concepts and machinery - We do not want to reinvent what
exists elsewhere. Also, we want to avoid future conflicts whenever we can pre-
dict them.

Introduction 1-151

JavaServer Pages 2.0 Specification

JSP.7.1.2 Overview

The processing of a JSP page conceptually follows these steps:

Parsing

JSP pages can be authored using two different syntaxes: a JSP syntax and an
XML syntax. The semantics and validation of a JSP syntax page is described with
reference to the semantics and validation of an equivalent document in the XML
syntax.

The first step is to parse the JSP page. The page that is parsed is as expanded
by the processing of include directives. Information in the TLD is used in this
step, including the identification of custom tags, so there is some processing of the
taglib directives in the JSP page.

Validation

The tag libraries in the XML document are processed in the order in which
they appear in the page.

Each library is checked for a validator class. If one is present, the whole
document is made available to its validate method as a PageData object. As of JSP
2.0, the Container must provide a jsp:id attribute. This information can be used to
provide location information on errors.

Each custom tag in the library is checked for a TagExtraInfo class. If one is
present, its validate method is invoked. The default implementation of validate is
to call isValid. See the APIs for more details.

Translation

Finally, the XML document is processed to create a JSP page implementation
class. This process may involve creating scripting variables. Each custom action
will provide information about variables, either statically in the TLD, or more
flexibly by using the getVariableInfo method of a TagExtraInfo class.

Execution

Once a JSP page implementation class has been associated with a JSP page,
the class will be treated as any other servlet class: Requests will be directed to
instances of the class. At run-time, tag handler instances will be created and
methods will be invoked in them.

TAG EXTENSIONS1-152

JavaServer Pages 2.0 Specification

JSP.7.1.3 Classic Tag Handlers

A classic tag handler is a Java class that implements the Tag, IterationTag, or
BodyTag interface, and is the run-time representation of a custom action.

The JSP page implementation class instantiates a tag handler object, or reuses
an existing tag handler object, for each action in the JSP page. The handler object
is a Java object that implements the javax.servlet.jsp.tagext.Tag interface. The
handler object is responsible for the interaction between the JSP page and
additional server-side objects.

There are three main interfaces: Tag, IterationTag, and BodyTag.

• The Tag interface defines the basic methods needed in all tag handlers. These
methods include setter methods to initialize a tag handler with context data and
attribute values of the action, and the doStartTag and doEndTag methods.

• The IterationTag interface is an extension to Tag that provides the additional
method, doAfterBody, invoked for the reevaluation of the body of the tag.

• The BodyTag interface is an extension of IterationTag with two new methods
for when the tag handler wants to manipulate the tag body: setBodyContent

passes a buffer, the BodyContent object, and doInitBody provides an opportuni-
ty to process the buffer before the first evaluation of the body into the buffer.

The use of interfaces simplifies making an existing Java object a tag handler.
There are also two support classes that can be used as base classes: TagSupport

and BodyTagSupport.
JSP 1.2 introduced a new interface designed to help maintain data integrity

and resource management in the presence of exceptions. The TryCatchFinally

interface is a “mix-in” interface that can be added to a class implementing any of
Tag, IterationTag, or BodyTag.

JSP.7.1.4 Simple Examples of Classic Tag Handlers

As examples, we describe prototypical uses of tag extensions, briefly sketching
how they take advantage of these mechanisms.

JSP.7.1.4.1 Plain Actions

The simplest type of action just does something, perhaps with parameters to
modify what the “something” is, and improve reusability.

This type of action can be implemented with a tag handler that implements the
Tag interface. The tag handler needs to use only the doStartTag method which is

Introduction 1-153

JavaServer Pages 2.0 Specification

invoked when the start tag is encountered. It can access the attributes of the tag
and information about the state of the JSP page. The information is passed to the
Tag object through setter method calls, prior to the call to doStartTag.

Since simple actions with empty tag bodies are common, the Tag Library
Descriptor can be used to indicate that the tag is always intended to be empty. This
indication leads to better error checking at translation time, and to better code
quality in the JSP page implementation class.

JSP.7.1.4.2 Actions with a Body

Another set of simple actions require something to happen when the start tag is
found, and when the end tag is found. The Tag interface can also be used for these
actions. The doEndTag is similar to the doStartTag method except that it is invoked
when the end tag of the action is encountered. The result of the doEndTag invocation
indicates whether the remainder of the page is to be evaluated or not.

JSP.7.1.4.3 Conditionals

In some cases, a body needs to be invoked only when some (possibly complex)
condition happens. Again, this type of action is supported by the basic Tag interface
through the use of return values in the doStartTag method.

JSP.7.1.4.4 Iterations

For iteration the IterationTag interface is needed. The doAfterBody method is
invoked to determine whether to reevaluate the body or not.

JSP.7.1.4.5 Actions that Process their Body

Consider an action that evaluates its body many times, creating a stream of
response data. The IterationTag protocol is used for this.

If the result of the reinterpretation is to be further manipulated for whatever
reason, including just discarding it, we need a way to divert the output of
reevaluations. This is done through the creation of a BodyContent object and use
of the setBodyContent method, which is part of the BodyTag interface. BodyTag

also provides the doInitBody method which is invoked after setBodyContent and
before the first body evaluation provides an opportunity to interact with the body.

JSP.7.1.4.6 Cooperating Actions

Cooperating actions may offer the best way to describe a desired functionality.
For example, one action may be used to describe information leading to the creation

TAG EXTENSIONS1-154

JavaServer Pages 2.0 Specification

of a server-side object, while another action may use that object elsewhere in the
page. These actions may cooperate explicitly, via scoped variables: one action cre-
ates an object and gives it a name; the other refers to the object through the name.

Two actions can also cooperate implicitly. A flexible and convenient
mechanism for action cooperation uses the nested structure of the actions to
describe scoping. This is supported in the specification by providing each tag
handler with its parent tag handler (if any) through the setParent method. The fin-

dAncestorWithClass static method in TagSupport can then be used to locate a tag
handler, and, once located, to perform valid operations on the tag handler.

JSP.7.1.4.7 Actions Defining Scripting Variables

A custom action may create server-side objects and make them available to
scripting elements by creating or updating the scripting variables. The variables thus
affected are part of the semantics of the custom action and are the responsibility of
the tag library author.

This information is used at JSP page translation time and can be described in
one of two ways: directly in the TLD for simple cases, or through subclasses of
TagExtraInfo. Either mechanism will indicate the names and types of the scripting
variables.

At request time the tag handler will associate objects with the scripting
variables through the pageContext object.

It is the responsibility of the JSP page translator to automatically supply the
code required to do the “synchronization” between the pageContext values and the
scripting variables.

There are some sections of JSP where scripting is not allowed. For example,
this is the case in a tag body where the body-content is declared as ‘scriptless’, or
in a page where <scripting-invalid> is true. In these sections, it is not possible to
access scripting variables directly via scriptlets or expressions, and therefore the
container need not synchronize them. Instead, the page author can use the EL to
access the pageContext values.

JSP.7.1.5 Simple Tag Handlers

The API and invocation protocol for classic tag handlers is necessarily some-
what complex because scriptlets and scriptlet expressions in tag bodies can rely on
surrounding context defined using scriptlets in the enclosing page.

With the advent of the Expression Language (EL) and JSP Standard Tag
Library (JSTL), it is now feasible to develop JSP pages that do not need scriptlets

Introduction 1-155

JavaServer Pages 2.0 Specification

or scriptlet expressions. This allows us to define a tag invocation protocol that is
easier to use for many use cases.

In that interest, JSP 2.0 introduces a new type of tag extension called a Simple
Tag Extension. Simple Tag Extensions can be written in one of two ways:

• In Java, by defining a class that implements the javax.servlet.jsp.tagext.Simple-

Tag interface. This class is intended for use by advanced page authors and tag
library developers who need the flexibility of the Java language in order to
write their tag handlers. The javax.servlet.jsp.tagext.SimpleTagSupport class
provides a default implementation for all methods in SimpleTag.

• In JSP, using tag files. This method can be used by page authors who do not
know Java. It can also be used by advanced page authors or tag library devel-
opers who know Java but are producing tag libraries that are presentation-cen-
tric or can take advantage of existing tag libraries. See Chapter JSP.8, “Tag
Files” for more details.

The lifecycle of a Simple Tag Handler is straightforward and is not
complicated by caching semantics. Once a Simple Tag Handler is instantiated by
the Container, it is executed and then discarded. The same instance must not be
cached and reused. Initial performance metrics show that caching a tag handler
instance does not necessarily lead to greater performance, and to accommodate
such caching makes writing portable tag handlers difficult and makes the tag
handler prone to error.

In addition to being simpler to work with, Simple Tag Extensions do not
directly rely on any servlet APIs, which allows for potential future integration
with other technologies. This is facilitated by the JspContext class, which Page-

Context now extends. JspContext provides generic services such as storing the
JspWriter and keeping track of scoped attributes, whereas PageContext has func-
tionality specific to serving JSPs in the context of servlets. Whereas the Tag inter-
face relies on PageContext, SimpleTag only relies on JspContext.

The body of a Simple Tag, if present, is translated into a JSP Fragment and
passed to the setJspBody method. The tag can then execute the fragment as many
times as needed. See Section JSP.7.1.6 for more details on JSP Fragments.
Because JSP fragments do not support scriptlets, the <body-content> of a
SimpleTag cannot be “JSP”. A TLD is invalid if it specifies “JSP” as the value for
<body-content> for a tag whose handler implements the SimpleTag interface. JSP
containers are recommended to but not required to produce an error if “JSP” is
specified in this case.

TAG EXTENSIONS1-156

JavaServer Pages 2.0 Specification

JSP.7.1.6 JSP Fragments

During the translation phase, various pieces of the page are translated into
implementations of the javax.servlet.jsp.tagext.JspFragment abstract class, before
being passed to a tag handler. This is done automatically for any JSP code in the
body of a named attribute (one that is defined by <jsp:attribute>) that is declared to
be a fragment, or of type JspFragment, in the TLD. This is also automatically
done for the body of any tag handled by a Simple Tag handler. Once passed in, the
tag handler can then evaluate and re-evaluate the fragment as many times as
needed, or even pass it along to other tag handlers, in the case of Tag Files.

A JSP fragment can be parameterized by a tag handler by setting page-scoped
attributes in the JspContext associated with the fragment. These attributes can then
be accessed via the EL.

A translation error must occur if a piece of JSP code that is to be translated
into a JSP Fragment contains scriptlets or scriptlet expressions.

See Chapter JSP.13, “Tag Extension API” for more details on the JspFragment

abstract class.

JSP.7.1.7 Simple Examples of Simple Tag Handlers

In this section, we revisit the prototypical uses of classic tag extensions, as was
presented in Section JSP.7.1.4, and briefly describe how they are implemented using
simple tag handlers.

JSP.7.1.7.1 Plain Actions

To implement plain actions, the tag library developer creates a class that
extends SimpleTagSupport and implements the doTag method. The details on
accessing attributes and enforcing an empty body are the same as with classic tag
handlers. By default, the rest of the page will be evaluated after invoking doTag.
To signal that the page is to be skipped, doTag throws SkipPageException.

JSP.7.1.7.2 Actions with a Body

To implement actions with a body, the tag library developer implements doTag

and invokes the body at any point by calling invoke on the JspFragment object
passed in via the setJspBody method. The tag handler can provide the fragment
access to variables through the JspContext object.

Introduction 1-157

JavaServer Pages 2.0 Specification

JSP.7.1.7.3 Conditionals

All conditional logic is handled in the doTag method. If the body is not to be
invoked, the tag library developer simply does not call invoke on the JspFragment

object passed in via setJspBody.

JSP.7.1.7.4 Iterations

All iteration logic is handled in the doTag method. The tag library developer
simply calls invoke on the JspFragment object passed in via setJspBody as many
times as needed.

JSP.7.1.7.5 Actions that Process their Body

To divert the result of the body invocation, the tag library developer passes a
java.io.Writer object to the invoke method on the body JspFragment. Unlike the stan-
dard tag handler’s BodyContent solution, the result of the invocation does not need
to be buffered.

JSP.7.1.7.6 Cooperating Actions

Cooperating actions work the same way as with classic tag handlers. A setPar-

ent method is available in the SimpleTag interface and is called by the container
before calling doTag if one tag invocation is nested within another. A findAncestor-

WithClass method is available on SimpleTagSupport. This should be used, instead of
TagSupport.findAncestorWithClass(), in all cases where the desired return value
may implement SimpleTag.

Note that SimpleTag does not extend Tag. Because of this, the JspTag common
base is used in these new APIs instead of Tag. Furthermore, because Tag.setParent

only accepts an object of type Tag, tag collaboration becomes more difficult when
classic tag handlers are nested inside SimpleTag custom actions.

To make things easier, the javax.servlet.jsp.tagext.TagAdapter class can wrap
any SimpleTag and expose it as if it were a Tag instace. The original JspTag can be
retrieved through its getAdaptee method. Whenever calling the setParent method
on a classic Tag in a case where the outer tag does not implement Tag, the JSP
Container must construct a new TagAdapter and call setParent on the classic Tag

passing in the adapter.
See Chapter JSP.13, “Tag Extension API” for more details on these APIs.

TAG EXTENSIONS1-158

JavaServer Pages 2.0 Specification

JSP.7.1.8 Attributes With Dynamic Names

Prior to JSP 2.0, the name of every attribute that a tag handler accepted was pre-
determined at the time the tag handler was developed. It is sometimes useful, how-
ever, to be able to define a tag handler that accepts attributes with dynamic names
that are not known until the page author uses the tag. For example, it is time con-
suming and error-prone to anticipate what attributes a user may wish to pass to a tag
that mimics an HTML element.

New to JSP 2.0 is the ability to declare that a tag handler accepts additional
attributes with dynamic names. This is done by having the tag handler implement
the javax.servlet.jsp.tagext.DynamicAttributes interface. See Chapter JSP.13, “Tag
Extension API” for more details on this interface.

JSP.7.1.9 Event Listeners

A tag library may include classes that are event listeners (see the Servlet 2.4
specification). The listeners classes are listed in the tag library descriptor and the
JSP container automatically instantiates them and registers them. A Container is
required to locate all TLD files (see Section JSP.7.3.1 for details on how they are
identified), read their listener elements, and treat the event listeners as extensions of
those listed in web.xml.

The order in which the listeners are registered is undefined, but they are
registered before application start.

JSP.7.2 Tag Libraries

A tag library is a collection of actions that encapsulate some functionality to be
used from within a JSP page. A tag library is made available to a JSP page through a
taglib directive that identifies the tag library via a URI (Universal Resource Identi-
fier).

The URI identifying a tag library may be any valid URI as long as it can be
used to uniquely identify the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library
Description (TLD) file and with tag handler classes as indicated in
Section JSP.7.3 below.

JSP.7.2.1 Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept a tag library
that is packaged as a JAR file. When deployed in a JSP container, the standard JAR

Tag Libraries 1-159

JavaServer Pages 2.0 Specification

conventions described in the Servlet 2.4 specification apply, including the conven-
tions for dependencies on extensions.

Packaged tag libraries must have at least one tag library descriptor file. The
JSP 1.1 specification allowed only a single TLD, in META-INF/taglib.tld, but as of
JSP 1.2 multiple tag libraries are allowed. See Section JSP.7.3.1 for how TLDs are
identified.

Both Classic and Simple Tag Handlers (implemented either in Java or as tag
files) can be packaged together.

JSP.7.2.2 Location of Java Classes

A tag library contains classes for instantiation at translation time and classes for
instantiation at request time. The former include classes such as TagLibraryValidator

and TagExtraInfo. The latter include tag handler and event listener classes.
The usual conventions for Java classes apply: as part of a web application,

they must reside either in a JAR file in the WEB-INF/lib directory, or in a directory
in the WEB-INF/classes directory.

A JAR containing packaged tag libraries must be dropped into the WEB-INF/

lib directory to make its classes available at request time (and also at translation
time, see Section JSP.7.3.7). The mapping between the URI and the TLD is
explained further below.

JSP.7.2.3 Tag Library directive

The taglib directive in a JSP page declares that the page uses a tag library,
uniquely identifies the tag library using a URI, and associates a tag prefix with usage
of the actions in the library.

A JSP container maps the URI used in the taglib directive into a Tag Library
Descriptor in two steps: it resolves the URI into a TLD resource path, and then
derives the TLD object from the TLD resource path.

If the JSP container cannot locate a TLD resource path for a given URI, a fatal
translation error shall result. Similarly, it is a fatal translation error for a URI
attribute value to resolve to two different TLD resource paths.

It is a fatal translation error for the taglib directive to appear after actions using
the prefix introduced by it.

TAG EXTENSIONS1-160

JavaServer Pages 2.0 Specification

JSP.7.3 The Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag
library. The TLD for a tag library is used by a JSP container to interpret pages that
include taglib directives referring to that tag library. The TLD is also used by JSP
page authoring tools that will generate JSP pages that use a library, and by authors
who do the same manually.

The TLD includes documentation on the library as a whole and on its
individual tags, version information on the JSP container and on the tag library,
and information on each of the actions defined in the tag library.

The TLD may name a TagLibraryValidator class that can validate that a JSP
page conforms to a set of constraints expected by the tag library.

Each action in the library is described by giving its name, the class of its tag
handler, information on any scripting variables created by the action, and
information on attributes of the action. Scripting variable information can be
given directly in the TLD or through a TagExtraInfo class. For each valid attribute
there is an indication about whether it is mandatory, whether it can accept request-
time expressions, and additional information.

A TLD file is useful for providing information on a tag library. It can be read
by tools without instantiating objects or loader classes. Our approach conforms to
the conventions used in other J2EE technologies.

As of JSP 2.0, the format for the Tag Library Descriptor is represented in
XML Schema. This allows for a more extensible TLD that can be used as a true
single-source document.

JSP.7.3.1 Identifying Tag Library Descriptors

Tag library descriptor files have names that use the extension .tld, and the
extension indicates a tag library descriptor file. When deployed inside a JAR file,
the tag library descriptor files must be in the META-INF directory, or a subdirectory
of it. When deployed directly into a web application, the tag library descriptor
files must always be in the WEB-INF directory, or some subdirectory of it. TLD
files should not be placed in /WEB-INF/classes or /WEB-INF/lib.

The XML Schema for a TLD document is http://java.sun.com/xml/ns/j2ee/

web-jsptaglibrary_2_0.xsd. See Section JSP.C.1, “XML Schema for TLD, JSP
2.0”.

Note that tag files, which collectively form tag libraries, may or may not have
an explicitly defined TLD. In the case that they do not, the container generates an
implicit TLD that can be referenced using the tagdir attribute of the taglib

The Tag Library Descriptor 1-161

JavaServer Pages 2.0 Specification

directive. More details about identifying this implicit Tag Library Descriptor can
be found in Chapter JSP.8, “Tag Files”.

JSP.7.3.2 TLD resource path

A URI in a taglib directive is mapped into a context relative path (as discussed in
Section JSP.1.2.1). The context relative path is a URL without a protocol and host
components that starts with / and is called the TLD resource path.

The TLD resource path is interpreted relative to the root of the web
application and should resolve to a TLD file directly, or to a JAR file that has a
TLD file at location META-INF/taglib.tld. If the TLD resource path is not one of
these two cases, a fatal translation error will occur.

The URI describing a tag library is mapped to a TLD resource path though a
taglib map, and a fallback interpretation that is to be used if the map does not
contain the URI. The taglib map is built from an explicit taglib map in web.xml

(described in Section JSP.7.3.3) that is extended with implicit entries deduced
from packaged tag libraries in the web application (described in
Section JSP.7.3.4), and implicit entries known to the JSP container. The fallback
interpretation is targetted to a casual use of the mechanism, as in the development
cycle of the Web Application; in that case the URI is interpreted as a direct path to
the TLD (see Section JSP.7.3.6.2).

The following order of precedence applies (from highest to lowest) when
building the taglib map (see the following sections for details):

1. Taglib Map in web.xml

2. Implicit Map Entries from TLDs

■ TLDs in JAR files in WEB-INF/lib

■ TLDs under WEB-INF

3. Implicit Map Entries from the Container

JSP.7.3.3 Taglib Map in web.xml

The web.xml file can include an explicit taglib map between URIs and TLD
resource paths described using the taglib elements of the Web Application Deploy-
ment descriptor in WEB-INF/web.xml. See Section JSP.3.2 for more details.

TAG EXTENSIONS1-162

JavaServer Pages 2.0 Specification

JSP.7.3.4 Implicit Map Entries from TLDs

The taglib map described in web.xml is extended with new entries extracted
from TLD files in the Web Application. The new entries are computed as follows:

• The container searches for all files with a .tld extension under /WEB-INF or a
subdirectory, and inside JAR files that are in /WEB-INF/lib. When examining a
JAR file, only resources under /META-INF or a subdirectory are considered.
The order in which these files are searched for is implementation-specific and
should not be relied on by web applications.

• Each TLD file is examined. If it has a <uri> element, then a new <taglib> ele-
ment is created, with a <taglib-uri> subelement whose value is that of the <uri>

element, and with a <taglib-location> subelement that refers to the TLD file.

• If the created <taglib> element has a different <taglib-uri> to any in the taglib
map, it is added.

This mechanism provides an automatic URI to TLD mapping as well as
supporting multiple TLDs within a packaged JAR. Note that this functionality
does not require explicitly naming the location of the TLD file, which would
require a mechanism like the jar:protocol.

Note also that the mechanism does not add duplicated entries.

JSP.7.3.5 Implicit Map Entries from the Container

The Container may also add additional entries to the taglib map. As in the previ-
ous case, the entries are only added for URIs that are not present in the map. Con-
ceptually the entries correspond to TLD describing these tag libraries.

These implicit map entries correspond to libraries that are known to the
Container, who is responsible for providing their implementation, either through
tag handlers, or via the mechanism described in Section JSP.7.3.9.

JSP.7.3.6 Determining the TLD Resource Path

The TLD resource path can be determined from the uri attribute of a taglib direc-
tive as described below. In the explanation below an absolute URI is one that starts
with a protocol and host, while a relative URI specification is as in section 2.5.2, i.e.
one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a
different implementation strategy as long as the result is preserved.

The Tag Library Descriptor 1-163

JavaServer Pages 2.0 Specification

JSP.7.3.6.1 Computing TLD Locations

The taglib map generated in Sections JSP.7.3.3, JSP.7.3.4 and JSP.7.3.5 may
contain one or more <taglib></taglib> entries. Each entry is identified by a taglib_uri,
which is the value of the <taglib-uri> subelement. This taglib_uri may be an abso-
lute URI, or a relative URI spec starting with / or one not starting with /. Each
entry also defines a taglib_location as follows:

• If the <taglib-location> subelement is some relative URI specification that starts
with a / the taglib_location is this URI.

• If the <taglib-location> subelement is some relative URI specification that does
not start with /, the taglib_location is the resolution of the URI relative to /WEB-

INF/web.xml (the result of this resolution is a relative URI specification that
starts with /).

JSP.7.3.6.2 Computing the TLD Resource Path

The following describes how to resolve a taglib directive to compute the TLD
resource path. It is based on the value of the uri attribute of the taglib directive.

• If uri is abs_uri, an absolute URI

Look in the taglib map for an entry whose taglib_uri is abs_uri. If found, the
corresponding taglib_location is the TLD resource path. If not found, a translation
error is raised.

• If uri is root_rel_uri, a relative URI that starts with /

Look in the taglib map for an entry whose taglib_uri is root_rel_uri. If found,
the corresponding taglib_location is the TLD resource path. If no such entry is
found, root_rel_uri is the TLD resource path.

• If uri is noroot_rel_uri, a relative URI that does not start with /

Look in the taglib map for an entry whose taglib_uri is noroot_rel_uri. If found,
the corresponding taglib_location is the TLD resource path. If no such entry is
found, resolve noroot_rel_uri relative to the current JSP page where the directive
appears; that value (by definition, this is a relative URI specification that starts
with /) is the TLD resource path. For example, if /a/b/c.jsp references
../../WEB-INF/my.tld, then if there is no taglib_location that matches
../../WEB-INF/my.tld, the TLD resource path would be /WEB-INF/my.tld.

TAG EXTENSIONS1-164

JavaServer Pages 2.0 Specification

JSP.7.3.6.3 Usage Considerations

The explicit web.xml map provides a explicit description of the tag libraries that
are being used in a web application.

The implicit map from TLDs means that a JAR file implementing a tag library
can be dropped in and used immediatedly through its stable URIs.

The use of relative URI specifications in the taglib map enables very short
names in the taglib directive. For example, if the map is:

<taglib>
 <taglib-uri>/myPRlibrary</taglib-uri>
 <taglib-location>/WEB-INF/tlds/PRlibrary_1_4.tld</taglib-location>
</taglib>

then it can be used as:

<%@ taglib uri=”/myPRlibrary” prefix=”x” %>

Finally, the fallback rule allows a taglib directive to refer directly to the TLD.
This arrangement is very convenient for quick development at the expense of less
flexibility and accountability. For example, in the case above, it enables:

<%@ taglib uri=”/WEB-INF/tlds/PRlibrary_1_4.tld” prefix=”x” %>

JSP.7.3.7 Translation-Time Class Loader

The set of classes available at translation time is the same as that available at
runtime: the classes in the underlying Java platform, those in the JSP container, and
those in the class files in WEB-INF/classes, in the JAR files in WEB-INF/lib, and,
indirectly those indicated through the use of the class-path attribute in the META-

INF/MANIFEST file of these JAR files.

JSP.7.3.8 Assembling a Web Application

As part of the process of assembling a web application, the Application Assem-
bler will create a WEB-INF/ directory, with appropriate lib/ and classes/ subdirecto-
ries, place JSP pages, servlet classes, auxiliary classes, and tag libraries in the proper
places, and create a WEB-INF/web.xml that ties everything together.

Tag libraries that have been delivered in the standard JAR format can be
dropped directly into WEB-INF/lib. This automatically adds all the TLDs inside the
JAR, making their URIs advertised in their <uri> elements visible to the URI to

The Tag Library Descriptor 1-165

JavaServer Pages 2.0 Specification

TLD map. The assembler may create taglib entries in web.xml for each of the
libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change
information that customizes a tag library; see Section JSP.7.5.3.

JSP.7.3.9 Well-Known URIs

A JSP container may “know of” some specific URIs and may provide alternate
implementations for the tag libraries described by these URIs, but the user must see
the behavior as that described by the required, portable tag library description
described by the URI.

A JSP container must always use the mapping specified for a URI in the
web.xml deployment descriptor if present. If the deployer wants to use the
platform-specific implementation of the well-known URI, the mapping for that
URI should be removed at deployment time.

JSP.7.3.10 Tag and Tag Library Extension Elements

The JSP 2.0 Tag Library Descriptor supports the notion of Tag Extension Ele-
ments and Tag Library Extension Elements. These are elements added to the TLD
by the tag library developer that provide additional information about the tag, using
a schema defined outside of the JSP specification.

The information contained in these extensions is intended to be used by tools
only, and is not accessible at compile-time, deployment-time, or run-time. JSP
containers must not alter their behavior based on the content, the presence, or the
absence of a particular Tag or Tag Library Extension Element. In addition, JSP
containers must consider invalid any tag library that specifies mustUnder-

stand=”true” for any Tag or Tag Library Extension element. Any attempt to use an
invalid tag library must produce a translation error. This is to preserve application
compatibility across containers.

The JSP container may use schema to validate the structure of the Tag Library
Descriptor. If it does so, any new content injected into Tag or Tag Library
Extension elements must not be validated by the JSP Container.

Tag Library Extension Elements provide extension information at the tag
library level, and are specified by adding a <taglib-extension> element as a child of
<taglib>. Tag Extension Elements provide extension information at the tag level,
and are specified by adding a <tag-extension> element as a child of <tag>. To use
these elements, an XML namespace must first be defined and the namespace must
be imported into the TLD.

TAG EXTENSIONS1-166

JavaServer Pages 2.0 Specification

There are efforts under way in the JCP (Java Community Process) to define
standard extensions for enhanced tool support for JSP page authoring. Such
standard extensions should be used where appropriate.

JSP.7.3.10.1 Example

In the following non-normative example, a fictitious company called ACME
has decided to enhance the page author’s experience by defining a set of Tag and
Tag Library Extension elements that cause sounds to be played when inserting
tags in a document.

In this hypothetical example, ACME has published an XML Schema at http://

www.acme.com/acme.xsd that defines the extensions, and has provided plug-ins
for various JSP-capable IDEs to recognize these extension elements.

The following example tag library uses ACME’s extensions to provide helpful
voice annotations that describe how to use each tag in the tag library. Relevant
parts highlighted in bold:

<taglib xmlns=”http://java.sun.com/xml/ns/j2ee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:acme=”http://acme.com/”

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd

http://acme.com/ http://acme.com/acme.xsd”

version=”2.0”>

<description>

Simple Math Tag Library.

Contains ACME sound extensions with helpful voice annotations

that describe how to use the tags in this library.

</description>

<tlib-version>1.0</tlib-version>

<short-name>math</short-name>

<tag>

The Tag Library Descriptor 1-167

JavaServer Pages 2.0 Specification

<description>Adds two numbers</description>

<display-name>add</display-name>

<name>add</name>

<tag-class>com.foobar.tags.AddTag</tag-class>

<body-content>empty</body-content>

<attribute>

<name>x</name>

<type>java.lang.Double</type>

</attribute>

<attribute>

<name>y</name>

<type>java.lang.Double</type>

</attribute>

<tag-extension namespace=”http://acme.com/”>

<!-- Extensions for tag sounds -->

<extension-element xsi:type=”acme:acme-soundsType”>

<acme:version>1.5</acme:version>

<!-- Sound played for help on the add tag -->

<acme:tag-sound>sounds/add.au</acme:tag-sound>

<!-- Sound played for help on the x attribute -->

<acme:attribute-sound name=”x”>

sounds/add-x.au

</acme:attribute-sound>

<!-- Sound that’s played for help on the yattribute -->

<acme:attribute-sound name=”y”>

sounds/add-y.au

</acme:attribute-sound>

</extension-element>

</tag-extension>

</tag>

<taglib-extension namespace=”http://acme.com/”>

<!-- Extensions for taglibrary sounds-->

<extension-element xsi:type=”acme:acme-soundsType”>

<acme:version>1.5</acme:version>

<!-- Sound played when author imports this taglib -->

<acme:import-sound>sounds/intro.au</acme:import-sound>

</extension-element>

</taglib-extension>

</taglib>

The corresponding acme.xsd file would look something like:

<?xml version=”1.0” encoding=”UTF-8”?>

TAG EXTENSIONS1-168

JavaServer Pages 2.0 Specification

<xsd:schema

 targetNamespace=”http://acme.com/”

 xmlns:j2ee=”http://java.sun.com/xml/ns/j2ee”

 xmlns:acme=”http://acme.com/”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns:xml=”http://www.w3.org/XML/1998/namespace”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

 version=”1.0”>

<xsd:annotation>

 <xsd:documentation>

This an XML Schema for sample Acme taglib extensibility

elements, used to test TLD extensibility.

 </xsd:documentation>

 </xsd:annotation>

 <!-- ** -->

 <xsd:import namespace=”http://java.sun.com/xml/ns/j2ee”

schemaLocation=”../web-jsptaglibrary_2_0.xsd” />

 <!-- ** -->

 <xsd:complexType name=”acme-soundsType”>

 <xsd:annotation>

 <xsd:documentation>

Extension for sounds associated with a tag

 </xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base=”j2ee:extensibleType”>

<xsd:sequence>

<xsd:element name=”version” type=”xsd:string”/>

<xsd:element name=”tag-sound” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”attribute-sound”

minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base=”xsd:string”>

<xsd:attribute name=”name” use=”required”

type=”xsd:string” />

</xsd:extension>

Validation 1-169

JavaServer Pages 2.0 Specification

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name=”import-sound” type=”xsd:string”

minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- ** -->

</xsd:schema>

JSP.7.4 Validation

There are a number of reasons why the structure of a JSP page should conform
to some validation rules:

• Request-time semantics; e.g. a subelement may require the information from
some enclosing element at request-time .

• Authoring-tool support; e.g. a tool may require an ordering in the actions.

• Methodological constraints; e.g. a development group may want to constrain
the way some features are used.

Validation can be done either at translation-time or at request-time. In general
translation-time validation provides a better user experience, and the JSP 2.0
specification provides a very flexible translation-time validation mechanism.

JSP.7.4.1 Translation-Time Mechanisms

Some translation-time validation is represented in the Tag Library Descriptor. In
some cases a TagExtraInfo class needs to be provided to supplement this informa-
tion.

JSP.7.4.1.1 Attribute Information

The Tag Library Descriptor contains the basic syntactic information. In particu-
lar, the attributes are described including their name, whether they are optional or

TAG EXTENSIONS1-170

JavaServer Pages 2.0 Specification

mandatory, and whether they accept request-time expressions. Additionally the
body-content element can be used to indicate that an action must be empty.

All constraints described in the TLD must be enforced. A tag library author
can assume that the tag handler instance corresponds to an action that satisfies all
constraints indicated in the TLD.

JSP.7.4.1.2 Validator Classes

A TagLibraryValidator class may be listed in the TLD for a tag library to request
that a JSP page be validated. The XML view of a JSP page is exposed through a
PageData class, and the validator class can do any checks the tag library author may
have found appropriate.

The JSP container must uniquely identify all XML elements in the XML view
of a JSP page through a jsp:id attribute. This attribute can be used to provide better
information on the location of an error.

The validator class mechanism is new as of the JSP 1.2 specification. A TagL-

ibraryValidator can be passed some initialization parameters in the TLD. This
eases the reuse of validator classes. We expect that validator classes will be
written based on different XML schema mechanisms (DTDs, XSchema, Relaxx,
others). Standard validator classes may be incorporated into a later version of the
JSP specification if a clear schema standard appears at some point.

JSP.7.4.1.3 TagExtraInfo Class Validation

Additional translation-time validation can be done using the validate method in
the TagExtraInfo class. The validate method is invoked at translation-time and is
passed a TagData instance as its argument. As of JSP 2.0, the default behavior of
validate is to call the isValid method.

The isValid mechanism was the original validation mechanism introduced in
JSP 1.1 with the rest of the Tag Extension machinery. Tag libraries that are
designed to run in JSP 1.2 containers or higher should use the validator class
mechanism. Tag libraries that are designed to run in JSP 2.0 containers or higher
that wish to use the TagExtraInfo validation mechanism are encouraged to
implement the validate method in favor of the isValid method due to the ability to
provide better validation messages. Either method will work, though
implementing both is not recommended.

JSP.7.4.2 Request-Time Errors

In some cases, additional request-time validation will be done dynamically
within the methods in the tag handler. If an error is discovered, an instance of JspEx-

Conventions and Other Issues 1-171

JavaServer Pages 2.0 Specification

ception can be thrown. If uncaught, this object will invoke the errorpage mechanism
of the JSP specification.

JSP.7.5 Conventions and Other Issues

This section is not normative, although it reflects good design practices.

JSP.7.5.1 How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:

• Define a tag library.

• Add an action called defineObjects to define the desired objects.

The JSP page can make these objects available as follows:

<%@ taglib prefix="me" uri="......" %>
<me:defineObjects />
.... start using the objects....

This approach has the advantage of requiring no new machinery and of
making very explicit the dependency.

In some cases there may be an implementation dependency in making these
objects available. For example, they may be providing access to some
functionality that exists only in a particular implementation. This can be done by
having the tag extension class test at run-time for the existence of some
implementation dependent feature and raise a run-time error (this, of course,
makes the page not J2EE compliant).

This mechanism, together with the access to metadata information allows for
vendors to innovate within the standard.

Note – If a feature is added to a JSP specification, and a vendor also provides
that feature through its vendor-specific mechanism, the standard mechanism, as
indicated in the JSP specification will “win”. This means that vendor-specific
mechanisms can slowly migrate into the specification as they prove their useful-
ness.

TAG EXTENSIONS1-172

JavaServer Pages 2.0 Specification

JSP.7.5.2 Access to Vendor-Specific information

If a vendor wants to associate some information that is not described in the cur-
rent version of the TLD with some tag library, it can do so by inserting the informa-
tion in a document it controls, inserting the document in the WEB-INF portion of the
Web Application where the Tag Library resides, and using the standard Servlet 2.4
mechanisms to access that information.

JSP.7.5.3 Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example,
a tag library that provides access to databases may be customized with login and
password information.

There is no convenient place in web.xml in the Servlet 2.4 spec for customiza-
tion information A standardized mechanism is probably going to be part of a forth-
coming JSP specification, but in the meantime the suggestion is that a tag library
author place this information in a well-known location at some resource in the WEB-

INF/ portion of the Web Application and access it via the getResource call on the
ServletContext.

1-173JavaServer Pages 2.0 Specification

C H A P T E R JSP.8
Tag Files

This chapter describes the details of tag files, a JSP 2.0 facility that allows
page authors to author tag extensions using only JSP syntax. In the past, the ability
to encapsulate presentation logic into reusable, full-featured tag libraries was only
available to developers that had a reasonable amount of Java experience. Tag files
bring the power of reuse to the basic page author, who are not required to know
Java. When used together with JSP Fragments and Simple Tag Handlers, these con-
cepts have the ability to simplify JSP development substantially, even for developers
who do know Java.

JSP.8.1 Overview

As of JSP version 2.0, the JSP Compiler is required to recognize tag files. A
tag file is a source file that provides a way for a page author to abstract a segment
of JSP code and make it reusable via a custom action.

Tag files allow a JSP page author to create tag libraries using JSP syntax. This
means that page authors no longer need to know Java or ask someone who knows
Java to write a tag extension. Even for page authors or tag library developers who
know Java, writing tag files is more convenient when developing tags that
primarily output template text.

The required file extension for a tag file are .tag or .tagx. As is the case with
JSP files, the actual tag may be composed of a top file that includes other files that
contain either a complete tag or a segment of a tag file. Just as the recommended
extension for a segment of a JSP file is .jspf, the recommended extension for a
segment of a tag file is .tagf.

TAG FILES1-174

JavaServer Pages 2.0 Specification

JSP.8.2 Syntax of Tag Files

The syntax of a tag file is similar to that of a JSP page, with the following
exceptions:

• Directives - Some directives are not available or have limited availability, and
some tag file specific directives are available. See Section JSP.8.5, “Tag File
Directives” for a discussion on tag file directives.

• The <jsp:invoke> and <jsp:doBody> standard actions can only be used in Tag
Files.

The EBNF grammar in Section JSP.1.3.10, “JSP Syntax Grammar” describes
the syntax of tag files. The root production for a tag files is JSPTagDef.

See Section JSP.8.6 for details on tag files in XML syntax.

JSP.8.3 Semantics of Tag Files

For each tag file in the web application, a tag handler is made available to JSP
pages and other tag files. The specifics of how this is done are left up to the Con-
tainer implementation. For example, some Containers may choose to compile tag
files into Java tag handlers, whereas others may decide to interpret the tag handlers.

However the Container chooses to prepare the tag handler, the following
conditions must hold true for all tag handlers defined as tag files:

• The tag file implementation must keep a copy of the JspContext instance
passed to it by the invoking page via the setJspContext method. This is called
the Invoking JSP Context.

• The tag file implementation must create and maintain a second instance of
JspContext called a JSP Context Wrapper. If the Invoking JSP Context is an
instance of PageContext, the JSP Context Wrapper must also be an instance of
PageContext. This wrapper must be returned when getJspContext() is called.

• For each invocation to the tag, the JSP Context Wrapper must present a clean
page scope containing no initial elements. All scopes other than the page
scope must be identical to those in the Invoking JSP Context and must be
modified accordingly when updates are made to those scopes in the JSP Con-
text Wrapper. Any modifications to the page scope, however, must not affect
the Invoking JSP Context.

Semantics of Tag Files 1-175

JavaServer Pages 2.0 Specification

• For each attribute declared and specified, a page-scoped variable must be cre-
ated in the page scope of the JSP Context Wrapper. The name of the variable
must be the same as the declared attribute name. The value of the variable
must be the value of the attribute passed in during invocation. For each at-
tribute declared as optional and not specified, no page-scoped variable is cre-
ated. If the tag accepts dynamic attributes, then the names and values of those
dynamic attributes must be exposed to the tag file as specified in Table JSP.8-
2.

• For all intents and purposes other than for synchronizing the AT_BEGIN,
NESTED, and AT_END scripting variables, the effective JspContext for the tag
file is the JSP Context Wrapper. For example, the jspContext scripting variable
must point to the JSP Context Wrapper instead of the invoking JSP Context.

• The tag handler must behave as though a tag library descriptor entry was de-
fined for it, in accordance with the tag, attribute, and variable directives that
appear in the tag file translation unit.

It is legal for a tag file to forward to a page via the <jsp:forward> standard
action. Just as for JSP pages, the forward is handled through the request
dispatcher. Upon return from the RequestDispatcher.forward method, the
generated tag handler must stop processing of the tag file and throw javax.serv-

let.jsp.SkipPageException. Similarly, if a tag file invokes a Classic Tag Handler
which returns SKIP_PAGE from the doEndTag method, or if it invokes a Simple
Tag Handler which throws SkipPageException in the doTag method, the generated
tag handler must terminate and SkipPageException must be thrown. In either of
these two cases, the doCatch and doFinally methods must be called on enclosing
tags that implement the TryCatchFinally interface before returning. The doEndTag

methods of enclosing classic tags must not be called.
Care should be taken when invoking a classic tag handler from a tag file. In

general, SimpleTag Extensions can be used in environments other than servlet
environments. However, because the Tag interface relies on PageContext, which in
turn assumes a servlet environment, using classic tag handlers indirectly binds the
use of the tag file to servlet environments. Nonetheless, the JSP container must
allow such an invocation to occur. When a tag file attempts to invoke a classic tag
handler (i.e. one that implements the Tag interface), it must cast the JspContext

passed to the SimpleTag into a PageContext. In the event that the class cast fails,
the invocation of the classic tag fails, and a JspException must be thrown.

TAG FILES1-176

JavaServer Pages 2.0 Specification

JSP.8.4 Packaging Tag Files

One of the goals of tag files as a technology is to make it as easy to write a tag
handler as it is to write a JSP. Traditionally, writing tag handlers has been a
tedious task, with a lot of time spent compiling and packaging the tag handlers
and writing a TLD to provide information to tools and page authors about the
custom actions. The rules for packaging tag files are designed to make it very
simple and fast to write simple tags, while still providing as much power and
flexibility as classic tag handlers have.

JSP.8.4.1 Location of Tag Files

Tag extensions written in JSP using tag files can be placed in one of two
locations. The first possibility is in the /META-INF/tags/ directory (or a
subdirectory of /META-INF/tags/) in a JAR file installed in the /WEB-INF/lib/

directory of the web application. Tags placed here are typically part of a reusable
library of tags that can be easily dropped into any web application.

The second possibility is in the /WEB-INF/tags/ directory (or a subdirectory of
/WEB-INF/tags/) of the web application. Tags placed here are within easy reach
and require little packaging. Only files with a .tag or .tagx extension are
recognized by the container to be tag files.

Tag files that appear in any other location are not considered tag extensions
and must be ignored by the JSP container. For example, a tag file that appears in
the root of a web application would be treated as content to be served.

JSP.8.4.2 Packaging in a JAR

To be accessible, tag files bundled in a JAR require a Tag Library Descriptor.
Tag files that appear in a JAR but are not defined in a TLD must be ignored by the
JSP container.

JSP 2.0 adds an additional TLD element to describe tags within a tag library,
namely <tag-file>. The <tag-file> element requires <name> and <path>

subelements, which define the tag name and the full path of the tag file from the
root of the JAR, respectively. In a JAR file, the <path> element must always begin
with /META-INF/tags. The values for the other subelements of <tag-file> override
the defaults specified in the tag directive.

Note that it is possible to combine both classic tag handlers and tag handlers
implemented using tag files in the same tag library by combining the use of <tag>

and <tag-file> elements under the <taglib> element. This means that in most
instances the client is unaware of how the tag extension was implemented. Given

Packaging Tag Files 1-177

JavaServer Pages 2.0 Specification

that <tag> and <tag-file> share a namespace, a tag library is considered invalid and
must be rejected by the container if a <tag-file> element has a <name> subelement
with the same content as a <name> subelement in a <tag> element. Any attempt to
use an invalid tag library must trigger a translation error.

JSP.8.4.3 Packaging Directly in a Web Application

Tag files placed in the /WEB-INF/tags/ directory of the web application, or a
subdirectory, are made easily accessible to JSPs without the need to explicitly
write a Tag Library Descriptor. This makes it convenient for page authors to
quickly abstract reusable JSP code by simply creating a new file and placing the
code inside of it.

The JSP container must interpret the /WEB-INF/tags/ directory and each
subdirectory under it, as another implicitly defined tag library containing tag
handlers defined by the tag files that appear in that directory. There are no special
relationships between subdirectories - they are allowed simply for organizational
purposes. For example, the following web application contains three tag libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tag
/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The JSP container must generate an implicit tag library for each directory
under and including /WEB-INF/tags/. This tag library can be imported only via the
tagdir attribute of the taglib directive (see Section JSP.1.10.2), and has the
following hard-wired values:

• <tlib-version> for the tag library defaults to 1.0

• <short-name> is derived from the directory name. If the directory is /WEB-

INF/tags/, the short name is simply tags. Otherwise, the full directory path
(relative to the web application) is taken, minus the /WEB-INF/tags/ prefix.
Then, all / characters are replaced with -, which yields the short name. Note
that short names are not guaranteed to be unique (as in /WEB-INF/tags/ versus
/WEB-INF/tags/tags/ or /WEB-INF/tags/a-b/ versus /WEB-INF/tags/a/b/)

• A <tag-file> element is considered to exist for each tag file in this directory,
with the following sub-elements:

TAG FILES1-178

JavaServer Pages 2.0 Specification

■ The <name> for each is the filename of the tag file, without the .tag exten-
sion.

■ The <path> for each is the path of the tag file, relative to the root of the web
application.

For the above example, the implicit Tag Library Descriptor for the /WEB-INF/

tags/bar/baz/ directory would be:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>

<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>

</tag-file>
</taglib>

Upon deployment, the JSP container must search for and process all tag files
appearing in these directories and subdirectories. In processing a tag file, the
container makes the custom actions defined in these tags available to JSP files.

Despite the existence of an implicit tag library, a Tag Library Descriptor in the
web application can still create additional tags from the same tag files. This is
accomplished by adding a <tag-file> element with a <path> that points to the tag
file. In this case, the value of <path> must start with /WEB-INF/tags.

JSP.8.4.4 Packaging as Precompiled Tag Handlers

Tag files can also be compiled into Java classes and bundled as a tag library.
This is useful for the situation where a tag library developer wishes to distribute a
binary version of the tag library without the original source. Tag library
developers that choose this form of packaging must use a tool that produces
portable JSP code that uses only standard APIs. Containers are not required to
provide such a tool.

Tag File Directives 1-179

JavaServer Pages 2.0 Specification

JSP.8.5 Tag File Directives

This section describes the directives available within tag files, which define
Simple Tag Handlers. Table JSP.8-1 outlines which directives are available in tag
files:

JSP.8.5.1 The tag Directive

The tag directive is similar to the page directive, but applies to tag files instead
of JSPs. Like the page directive, a translation unit can contain more than one
instance of the tag directive, all the attributes will apply to the complete translation
unit (i.e. tag directives are position independent). There shall be only one occur-
rence of any attribute/value defined by this directive in a given translation unit,
unless the values for the duplicate attributes are identical for all occurrences. The
import and pageEncoding attributes are exempt from this rule and can appear multi-
ple times. Multiple uses of the import attribute are cumulative (with ordered set
union semantics). Other such multiple attribute/value (re)definitions result in a
fatal translation error if the values do not match.

Table JSP.8-1 Directives available to tag files

Directive Available? Interpretation/Restrictions

page no A tag file is not a page. The tag directive must
be used instead. If this directive is used in a
tag file, a translation error must result.

taglib yes Identical to JSP pages.

include yes Identical to JSP pages. Note that if the
included file contains syntax unsuitable for tag
files, a translation error must occur.

tag yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

attribute yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

variable yes Only applicable to tag files. An attempt to use
this directive in JSP pages will result in a
translation error.

TAG FILES1-180

JavaServer Pages 2.0 Specification

The attribute/value namespace is reserved for use by this, and subsequent, JSP
specification(s).

Unrecognized attributes or values result in fatal translation errors.

Examples

<%@ tag display-name=”Addition”
body-content=”scriptless”
dynamic-attributes=”dyn”
small-icon=”/WEB-INF/sample-small.jpg”
large-icon=”/WEB-INF/sample-large.jpg”
description=”Sample usage of tag directive” %>

Syntax

<%@ tag tag_directive_attr_list %>

tag_directive_attr_list ::=
{ display-name=”display-name” }
{ body-content=”scriptless|tagdependent|empty” }
{ dynamic-attributes=”name” }
{ small-icon=”small-icon” }
{ large-icon=”large-icon” }
{ description=”description” }
{ example=”example” }
{ language=”scriptingLanguage” }
{ import=”importList” }
{ pageEncoding=”peinfo” }
{ isELIgnored=”true|false” }

The details of the attributes are as follows:

Table JSP.8-2 Details of tag directive attributes

display-name (optional) A short name that is intended to be displayed by
tools. Defaults to the name of the tag file, without the .tag
extension.

body-content (optional) Provides information on the content of the body of
this tag. Can be either empty, tagdependent, or scriptless. A
translation error will result if JSP or any other value is used.
Defaults to scriptless.

Tag File Directives 1-181

JavaServer Pages 2.0 Specification

dynamic-attributes (optional) The presence of this attribute indicates this tag
supports additional attributes with dynamic names. If
present, the generated tag handler must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface, and the
container must treat the tag as if its corresponding TLD entry
contained <dynamic-attributes>true</dynamic-attributes>.
The implementation must not reject any attribute names. The
value identifies a page scoped attribute in which to place a
Map containing the names and values of the dynamic
attributes passed during this invocation. The Map must
contain each dynamic attribute name as the key and the
dynamic attribute value as the corresponding value. Only
dynamic attributes with no uri are to be present in the Map;
all other dynamic attributes are ignored. A translation error
will result if there is a tag directive with a dynamic-attributes
attribute equal to the value of a name-given attribute of a vari-
able directive or equal to the value of a name attribute of an
attribute directive in this translation unit.

small-icon (optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing a small icon
that can be used by tools. Defaults to no small icon.

large-icon (optional) Either a context-relative path, or a path relative to
the tag source file, of an image file containing a large icon
that can be used by tools. Defaults to no large icon.

description (optional) Defines an arbitrary string that describes this tag.
Defaults to no description.

example (optional) Defines an arbitrary string that presents an
informal description of an example of a use of this action.
Defaults to no example.

language (optional) Carries the same syntax and semantics of the
language attribute of the page directive.

import (optional) Carries the same syntax and semantics of the
import attribute of the page directive.

Table JSP.8-2 Details of tag directive attributes

TAG FILES1-182

JavaServer Pages 2.0 Specification

JSP.8.5.2 The attribute Directive

The attribute directive is analogous to the <attribute> element in the Tag Library
Descriptor, and allows for the declaration of custom action attributes.

Examples

<%@ attribute name=”x” required=”true” fragment=”false”
rtexprvalue=”false” type=”java.lang.Integer”
description=”The first operand” %>

<%@ attribute name=”y” type=”java.lang.Integer” %>

<%@ attribute name=”prompt” fragment=”true” %>

Syntax

<%@ attribute attribute_directive_attr_list %>

attribute_directive_attr_list ::=
name=”attribute-name”
{ required=”true|false” }
{ fragment=”true|false” }
{ rtexprvalue=”true|false” }
{ type=”type” }
{ description=”description” }

pageEncoding (optional) Carries the same syntax and semantics of the pag-
eEncoding attribute in the page directive. However, there is
no corresponding global configuration element in web.xml.
The pageEncoding attribute cannot be used in tag files in
XML syntax.

isELIgnored (optional) Carries the same syntax and semantics of the isE-
LIgnored attribute of the page directive. However, there is no
corresponding global configuration element in web.xml.

Table JSP.8-2 Details of tag directive attributes

Tag File Directives 1-183

JavaServer Pages 2.0 Specification

The details of the attributes are as follows:

JSP.8.5.3 The variable Directive

The variable directive is analogous to the <variable> element in the Tag Library
descriptor, and defines the details of a variable exposed by the tag handler to the
calling page.

See Section JSP.7.1.4.7, “Actions Defining Scripting Variables” for more
details.

Table JSP.8-3 Details of attribute directive attributes

name (required) The unique name of the attribute being declared.
A translation error must result if more than one attribute
directive appears in the same translation unit with the same
name. A translation error will result if there is an attribute
directive with a name attribute equal to the value of the
name-given attribute of a variable directive or the dynamic-
attributes attribute of a tag directive in this translation unit.

required (optional) Whether this attribute is required (true) or optional
(false). Defaults to false if not specified.

fragment (optional) Whether this attribute is a fragment to be
evaluated by the tag handler (true) or a normal attribute to be
evaluated by the container prior to being passed to the tag
handler. If this attribute is true, the type attribute is fixed at
javax.servlet.jsp.tagext.JspFragment and a translation error
will result if the type attribute is specified. Also, if this
attribute is true, the rtexprvalue attribute is fixed at true and a
translation error will result if the rtexprvalue attribute is
specified. Defaults to false.

rtexprvalue (optional) Whether the attribute’s value may be dynamically
calculated at runtime by a scriptlet expression. Unlike the
corresponding TLD element, this attribute defaults to true.

type (optional) The runtime type of the attribute’s value. Defaults
to java.lang.String if not specified. It is a translation error to
specify a primitive type.

description (optional) Description of the attribute. Defaults to no
description.

TAG FILES1-184

JavaServer Pages 2.0 Specification

Examples

<%@ variable name-given=”sum”
variable-class=”java.lang.Integer”
scope=”NESTED”
declare=”true”
description=”The sum of the two operands” %>

<%@ variable name-given=”op1”
variable-class=”java.lang.Integer”
description=”The first operand” %>

<%@ variable name-from-attribute=”var” alias=”result” %>

Syntax

<%@ variable variable_directive_attr_list %>

variable_directive_attr_list ::=
(name-given=”output-name”

| (name-from-attribute=”attr-name”
alias=”local-name”

)
)
{ variable-class=”output-type” }
{ declare=”true|false” }
{ scope=”AT_BEGIN|AT_END|NESTED” }
{ description=”description” }

The details of the attributes are as follows:

Table JSP.8-4 Details of variable directive attributes

name-given Defines a scripting variable to be defined in the page
invoking this tag. Either the name-given attribute or the
name-from-attribute attribute must be specified. Specifying
neither or both will result in a translation error. A
translation error will result if two variable directives have
the same name-given. A translation error will result if there
is a variable directive with a name-given attribute equal to
the value of the name attribute of an attribute directive or
the dynamic-attributes attribute of a tag directive in this
translation unit.

Tag File Directives 1-185

JavaServer Pages 2.0 Specification

name-from-attribute Defines a scripting variable to be defined in the page
invoking this tag. The specified name is the name of an
attribute whose (translation-time) value at of the start of the
tag invocation will give the name of the variable. A
translation error will result if there is no attribute directive
with a name attribute equal to the value of this attribute that
is of type java.lang.String, is required and not an rtex-
prvalue. Either the name-given attribute or the name-from-
attribute attribute must be specified. Specifying neither or
both will result in a translation error. A translation error
will result if two variable directives have the same name-
from-attribute.

alias Defines a locally scoped attribute to hold the value of this
variable. The container will synchronize this value with the
variable whose name is given in name-from-attribute.
Required when name-from-attribute is specified. A
translation error must occur if used without name-from-
attribute. A translation error must occur if the value of alias
is the same as the value of a name attribute of an attribute
directive or the name-given attribute of a variable directive
in the same translation unit.

variable-class (optional) The name of the class of the variable. The
default is java.lang.String.

declare (optional) Whether the variable is declared or not in the
calling page/tag file, after this tag invocation. true is the
default.

scope (optional) The scope of the scripting variable defined. Can
be either AT_BEGIN, AT_END, or NESTED. Defaults to
NESTED.

description (optional) An optional description of this variable. Defaults
to no description.

Table JSP.8-4 Details of variable directive attributes

TAG FILES1-186

JavaServer Pages 2.0 Specification

JSP.8.6 Tag Files in XML Syntax

Tag files can be authored using the XML syntax, as described in JSP Docu-
ments, Chapter JSP.6. This section describes the few distinctions from the case of
JSP documents.

Tag files in XML syntax must have the extension .tagx. All files with
extension .tagx according to the rules in Section JSP.8.4.1 are tag files in XML
syntax. Conversely, files with extension .tag are not in XML syntax.

The jsp:root element can, but needs not, appear in tag files in XML syntax. A
jsp:root element cannot appear in a tag file in JSP syntax.

As indicated in Section JSP.5.16, “<jsp:output>”, the default for tag files, in
either syntax, is not to generate the xml declaration. The element jsp:output can be
used to change that default for tag files in XML syntax.

Finally, the tag directive in a tag file in XML syntax cannot include a pageEn-

coding attribute; the encoding is inferred using the conventions for XML
documents. Using the pageEncoding attribute shall result in a translation-time
error.

JSP.8.7 XML View of a Tag File

Similar to JSP pages, tag files have an equivalent XML document, the XML
view of a tag file, that is exposed to the translation phase for validation. During the
translation phase for a tag file, a tag XML view is created and passed to all TLVs
declared in all tag libraries declared in the tag file.

The XML view of a tag file is identical to the XML view of a JSP, except that
there are additional XML elements defined to handle tag file specific features. The
XML view of a tag file is obtained in the same way that the XML view of a JSP
page is obtained (see Chapter JSP.10).

JSP.8.8 Implicit Objects

Tag library developers writing tag files have access to certain implicit objects
that are always available for use within scriptlets and expressions through
scripting variables that are declared implicitly at the beginning of the tag handler
implementation. All scripting languages are required to provide access to these
objects.

Implicit Objects 1-187

JavaServer Pages 2.0 Specification

Each implicit object has a class or interface type defined in a core Java
technology or Java Servlet API package, as shown in Table JSP.8-5.

Table JSP.8-5 Implicit Objects Available in Tag Files

Variable
Name Type Semantics & Scope

request protocol dependent subtype of:
javax.servlet.ServletRequest
e.g:
javax.servlet.http.HttpServletRequest

The request triggering
the service invocation.
request scope.

response protocol dependent subtype of:
javax.servlet.ServletResponse, e.g:
javax.servlet.http.HttpServletResponse

The response to the
request.
page scope.

jspContext javax.servlet.jsp.JspContext The JspContext for this
tag file.
page scope.

session javax.servlet.http.HttpSession The session object
created for the requesting
client (if any).
This variable is only
valid for HTTP
protocols.
session scope

application javax.servlet.ServletContext The servlet context
obtained from the servlet
configuration object
(as in the call getServlet-
Config().
getContext())
application scope

out javax.servlet.jsp.JspWriter An object that writes into
the output stream.
page scope

config javax.servlet.ServletConfig The ServletConfig for
this JSP page
page scope

TAG FILES1-188

JavaServer Pages 2.0 Specification

Object names with prefixes jsp, _jsp, jspx and _jspx, in any combination of
upper and lower case, are reserved by the JSP specification.

JSP.8.9 Variable Synchronization

Just as is the case for all tag handlers, a tag file is able to communicate with its
calling page via variables. As mentioned earlier, in tag files, variables are declared
using the variable directive. Though the scopes of variables are similar to those in
classic tag handlers, the semantics are slightly different. The intent is to be able to
emulate IN and OUT parameters using attributes and variables, which appear as
page-scoped attributes local to the tag file, and are synchronized with the calling
page’s JspContext at various points.

The name-from-attribute and alias attributes of the variable directive can be
used to allow the caller to customize the name of the variable in the calling page
while referring to a constant name in the tag file. When using these attributes, the
name of the variable in the calling page is derived from the value of name-from-

attribute at the time the tag was called. The name of the corresponding variable in
the tag file is the value of alias.

• IN parameters - Use attributes. For each attribute, a page-scoped attribute is
made available in the JspContext of the tag file. The page-scoped attribute is
initialized to the value of the attribute when the tag is called. No further syn-
chronization is performed.

• OUT parameters - Use variables with scope AT_BEGIN or AT_END. For each
AT_BEGIN or AT_END variable, a page-scoped attribute is made available in
the JspContext of the tag file. The scoped attribute is not initialized. Synchro-
nization is performed at the end of the tag for AT_BEGIN and AT_END and
also before the invocation of a fragment for AT_BEGIN. See Table JSP.8-6 for
details.

• Nested parameters - Use variables with scope AT_BEGIN or NESTED. For
each AT_BEGIN or NESTED variable, a page-scoped attribute is made avail-
able in the JspContext of the tag file. The scoped attribute is not initialized.
Synchronization is performed before each fragment invocation for AT_BEGIN

and NESTED, and also after the end of the tag for AT_BEGIN. See Table JSP.8-
6 for details.

Variable Synchronization 1-189

JavaServer Pages 2.0 Specification

JSP.8.9.1 Synchronization Points

The JSP container is required to generate code to handle the synchronization
of each declared variable. The details of how and when each variable is
synchronized varies by the variable’s scope, as per Table JSP.8-6.

The following list describes what each synchronization action means. If
name-given is used, the name of the variable in the calling page (referred to as P)
and the name of the variable in the tag file (referred to as T) are the same and are
equal to the value of name-given. If name-from-attribute is used, the name of P is
equal to the value of the attribute (at the time the page was called) specified by the
value of name-from-attribute and the name of T is equal to the value of the alias

attribute.

• - For this variable, if T exists in the tag file, create/update P in the
calling page. If a T does not exist in the tag file, and P does exist in the calling
page, P is removed from the calling page’s page scope. If the declare attribute
for this variable is set to true, a corresponding scripting variable is declared in
the calling page or tag file, as with any other tag handler. If this scripting vari-
able would not be accessible in the context in which it is defined, the container
need not declare the scripting variable (for example in a scriptless body).

• save - For this variable, save the value of P, for later restoration. If P did not
exist, remember that fact.

• restore - For this variable, restore the value of P in the calling page, from the
value saved earlier. If P did not exist before, ensure it does not exist now.

All variable synchronization and restoration that occurs at the end of a tag file
must occur regardless of whether an exception is thrown inside the tag file. All
variable synchronization that occurs after the invocation of a fragment must occur
regardless of whether an exception occured while invoking the fragment.

Table JSP.8-6 Variable synchronization behavior

AT_BEGIN NESTED AT_END

Beginning of tag file do nothing save do nothing

Before any fragment do nothing

After any fragment do nothing do nothing do nothing

End of tag file restore

tag page→ tag page→

tag page→ tag page→

tag page→

TAG FILES1-190

JavaServer Pages 2.0 Specification

JSP.8.9.2 Synchronization Examples

The following examples help illustrate how variable synchronization works
between a tag file and its calling page.

JSP.8.9.2.1 Example of AT_BEGIN

In this example, the AT_BEGIN scope is used to pass a variable to the tag’s body,
and make it available to the calling page at the end of the tag invocation.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 4) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”AT_BEGIN” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

JSP.8.9.2.2 Example of AT_BEGIN and name-from-attribute

Like the previous example, in this example the AT_BEGIN scope is used to pass
a variable to the tag’s body, and make it available to the calling page at the end of the
tag invocation. The name of the attribute is customized via name-from-attribute.

Variable Synchronization 1-191

JavaServer Pages 2.0 Specification

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example var=”x”>

${x} <%-- (x == 2) --%>
${result} <%-- (result == null) --%>
<c:set var=”x” value=”3”/>
<c:set var=”result” value=”invisible”/>

</my:example>
${x} <%-- (x == 4) --%>
${result} <%-- (result == ‘invisible’) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ attribute name=”var” required=”true” rtexprvalue=”false”%>
<%@ variable alias=”result” name-from-attribute=”var” scope=”AT_BEGIN” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
${result} <%-- (result == null) --%>
<c:set var=”x” value=”ignored”/>
<c:set var=”result” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == ‘ignored’) --%>
${result} <%-- (result == 2) --%>
<c:set var=”x” value=”still_ignored”/>
<c:set var=”result” value=”4”/>

JSP.8.9.2.3 Example of NESTED

In this example, the NESTED scope is used to make a private variable available
to the calling page. The original value is restored when the tag is done.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 1) --%>

TAG FILES1-192

JavaServer Pages 2.0 Specification

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”NESTED” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

JSP.8.9.2.4 Example of AT_END

In this example, the AT_END scope is used to return a value to the page. The
body of the tag is not affected.

<%-- page.jsp --%>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<c:set var=”x” value=”1”/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 1) --%>
<c:set var=”x” value=”3”/>

</my:example>
${x} <%-- (x == 4) --%>

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”AT_END” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
${x} <%-- (x == null) --%>
<c:set var=”x” value=”2”/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var=”x” value=”4”/>

JSP.8.9.2.5 Example of Removing Parameters

This example illustrates how the tag file can remove objects from the page
scope of the calling page during synchronization.

Variable Synchronization 1-193

JavaServer Pages 2.0 Specification

<%-- page.jsp --%>
<%@ taglib prefix=”my” tagdir=”/WEB-INF/tags” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”x” value=”2”/>
${x}
<my:tag1>

‘${x}’
</my:tag1>
${x}

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given=”x” scope=”NESTED” %>
<%@ taglib prefix=”c” uri=”http://java.sun.com/jsp/jstl/core” %>
<c:set var=”x” value=”1”/>
<jsp:doBody/>
<c:remove var=”x”/>
<jsp:doBody/>

The expected output of this example is: 2 ‘1’ ‘’ 2

TAG FILES1-194

JavaServer Pages 2.0 Specification

1-195JavaServer Pages 2.0 Specification

C H A P T E R JSP.9
Scripting

This chapter describes the details of the Scripting Elements when the lan-
guage directive value is java.

The scripting language is based on the Java programming language (as
specified by “The Java Language Specification”), but note that there is no valid
JSP page, or a subset of a page, that is a valid Java program.

The following sections describe the details of the relationship between the
scripting declarations, scriptlets, and scripting expressions, and the Java
programming language. The description is in terms of the structure of the JSP
page implementation class. A JSP Container need not generate the JSP page
implementation class, but it must behave as if one exists.

JSP.9.1 Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting
language used in the page. This is especially complex since scriptlets are language
fragments, not complete language statements.

JSP.9.1.1 Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementa-
tion class defined by Table JSP.9-1 (after applying all include directives), together
with any other classes defined by the JSP container, is a valid program for the given
Java Platform, and if it passes the validation methods for all the tag libraries associ-
ated with the JSP page.

SCRIPTING1-196

JavaServer Pages 2.0 Specification

JSP.9.1.2 Reserved Names

Sun Microsystems reserves all names of the form {_}jsp_* and {_}jspx_*, in
any combination of upper and lower case, for the JSP specification. Names of this
form that are not defined in this specification are reserved by Sun for future
expansion.

JSP.9.1.3 Implementation Flexibility

The transformations described in this chapter need not be performed literally.
An implementation may implement things differently to provide better perfor-
mance, lower memory footprint, or other implementation attributes.

Table JSP.9-1 Structure of the JavaProgramming Language Class

Optional imports
clause as indicated
via jsp directive

import name1

SuperClass is either
selected by the JSP
container or by the
JSP author via the jsp
directive.
Name of class
(_jspXXX) is
implementation
dependent.

class _jspXXX extends SuperClass

Start of the body of a
JSP page
implementation class

{

(1) Declaration
Section

// declarations...

signature for
generated method

public void _jspService(<ServletRequestSubtype>
request,
<ServletResponseSubtype> response)

throws ServletException, IOException {

Declarations Section 1-197

JavaServer Pages 2.0 Specification

JSP.9.2 Declarations Section

The declarations section corresponds to the declaration elements.
The contents of this section is determined by concatenating all the

declarations in the page in the order in which they appear.

JSP.9.3 Initialization Section

This section defines and initializes the implicit objects available to the JSP page.
See Section JSP.1.8.3, “Implicit Objects”.

JSP.9.4 Main Section

This section provides the main mapping between a request and a response
object.

The content of code segment 2 is determined from scriptlets, expressions, and
the text body of the JSP page. The elements are processed sequentially in the
order in which they appear in the page. The translation for each one is determined
as indicated below, and its translation is inserted into this section. The translation
depends on the element type:

JSP.9.4.1 Template Data

Template data is transformed into code that will place the template data into the
stream named by the implicit variable out when the code is executed. White space is
preserved.

(2) Implicit Objects
Section

// code that defines and initializes request, response, page,
pageContext etc.

(3) Main Section // code that defines request/response mapping

close of _jspService
method

}

close of _jspXXX }

Table JSP.9-1 Structure of the JavaProgramming Language Class

SCRIPTING1-198

JavaServer Pages 2.0 Specification

Ignoring quotation issues and performance issues, this corresponds to a
statement of the form:

JSP.9.4.2 Scriptlets

A scriptlet is transformed into its code fragment.:

JSP.9.4.3 Expressions

An expression is transformed into a Java statement to insert the value of the
expression, converted to java.lang.String if needed, into the stream named by the
implicit variable out. No additional newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of
the form:

JSP.9.4.4 Actions

An action defining one or more objects is transformed into one or more variable
declarations for those objects, together with code that initializes the variables. Their
visibility is affected by other constructs, for example scriptlets.

The semantics of the action type determines the names of the variables
(usually the name of an id attribute, if present) and their type. The only standard
action in the JSP specification that defines objects is the jsp:useBean action. The
name of the variable introduced is the name of the id attribute and its type is the
type of the class attribute.

Original Equivalent Text
template out.print(template)

Original Equivalent Text
<% fragment %> fragment

Original Equivalent Text
<%= expression %> out.print(expression)

Original Equivalent Text
<x:tag>

foo
</x:tag>

declare AT_BEGIN variables
{

declare NESTED variables
transformation of foo

}
declare AT_END variables

Main Section 1-199

JavaServer Pages 2.0 Specification

Note that the value of the scope attribute does not affect the visibility of the
variables within the generated program. It affects where and thus for how long
there will be additional references to the object denoted by the variable.

SCRIPTING1-200

JavaServer Pages 2.0 Specification

1-201JavaServer Pages 2.0 Specification

C H A P T E R JSP.10
XML View

This chapter provides details on the XML view of a JSP page and tag files.
The XML views are used to enable validation of JSP pages and tag files..

JSP.10.1 XML View of a JSP Document, JSP Page or Tag File

This section describes the XML view of a JSP page or tag file: the mapping
between a JSP page, JSP document or tag file, and an XML document describing it.

JSP.10.1.1 JSP Documents and Tag Files in XML Syntax

The XML view of a JSP document or of a tag file written in XML syntax is
very close to the original JSP page. Only five transformations are performed:

• Expand all include directives into the JSP content they include. See
Section JSP.1.10.5 for the semantics of mixing XML and standard syntax con-
tent.

• Add a jsp:root element as the root element if the JSP document or tag file in
XML syntax does not have it.

• Set the value of the pageEncoding attribute of the page directive to "UTF-8".
The page directive and the pageEncoding attribute are added if they don’t ex-
ist already.

• Set the value of the contentType attribute of the page directive to the value that
the container will pass to ServletResponse.setContentType(), determined as
described in Section JSP.4.2, “Response Character Encoding”. The page di-
rective and the contentType attribute are added if they don’t exist already.

• Add the jsp:id attribute (see Section JSP.10.1.13).

XML VIEW1-202

JavaServer Pages 2.0 Specification

JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax

The XML view of a JSP page or tag file written in standard syntax is defined
by the following transformation:

• Expand all include directives into the JSP content they include. See
Section JSP.1.10.5 for the semantics of mixing XML and standard syntax con-
tent.

• Add a jsp:root element as the root, with appropriate xmlns:jsp attribute, and
convert the taglib directive into xmlns: attributes of the jsp:root element.

• Convert declarations, scriptlets, and expressions into valid XML elements as
described in Section JSP.6.3.2 and the following sections.

• Convert request-time attribute expressions as in Section JSP.10.1.11.

• Convert JSP quotations to XML quotations.

• Create jsp:text elements for all template text.

• Add the jsp:id attribute (see Section JSP.10.1.13).

Note that the XML view of a JSP page or tag file has no DOCTYPE

information; see Section JSP.10.2.
A quick overview of the transformation is shown in Table JSP.10-1:

Table JSP.10-1 XML View Transformations

JSP element XML view

<%-- comment --%> removed

<%@ page ... %> <jsp:directive.page ... />. Add jsp:id

<%@ taglib ... %> jsp:root element is annotated with namespace
information. Add jsp:id.

<%@ include ... %> expanded in place

<%! ... %> <jsp:declaration> ... </jsp:declaration>. Add jsp:id.

<% ... %> <jsp:scriptlet> ... </jsp:scriptlet>. Add jsp:id.

<%= ... %> <jsp:expression> ... </jsp:expression>. Add jsp:id.

Standard action Replace with XML syntax (adjust request-time
expressions; add jsp:id)

XML View of a JSP Document, JSP Page or Tag File 1-203

JavaServer Pages 2.0 Specification

In more detail:

JSP.10.1.3 JSP Comments

JSP comments (of the form <%-- comment --%>) are not passed through to the
XML view of a JSP page.

JSP.10.1.4 The page Directive

A page directive of the form:

<%@ page { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.page { attr=”value” }* />

The value of the pageEncoding attribute is set to "UTF-8". The value of the
contentType attribute is set to the value that the container will pass to
ServletResponse.setContentType(), determined as described in Section JSP.4.2,
“Response Character Encoding”. The page directive and both attributes are added
if they don’t exist already.

JSP.10.1.5 The taglib Directive

A taglib directive of the form

<%@ taglib uri=”uriValue” prefix=”prefix” %>

Custom action As is (adjust request-time expressions; add jsp:id)

template Replace with jsp:text. Add jsp:id.

<%@ tag ... %> <jsp:directive.tag ... />. Add jsp:id. [tag files only]

<%@ attribute ... %> <jsp:directive.attribute ... />. Add jsp:id. [tag files only]

<%@ variable ... %> <jsp:directive.variable ... />. Add jsp:id. [tag files only]

Table JSP.10-1 XML View Transformations

JSP element XML view

XML VIEW1-204

JavaServer Pages 2.0 Specification

is translated into an xmlns:prefix attribute on the root of the JSP document, with
a value that depends on uriValue. If uriValue is a relative path, then the value used is
urn:jsptld:uriValue; otherwise, the uriValue is used directly.

A taglib directive of the form

<%@ taglib tagdir=”tagDirValue” prefix=”prefix” %>

is translated into an xmlns:prefix attribute on the root of the JSP document, with
a value of the form urn:jsptagdir:tagDirValue.

JSP.10.1.6 The include Directive

An include directive of the form

<%@ include file=”value” %>

is expanded into the JSP content indicated by value. This is done to allow for
validation of the page.

JSP.10.1.7 Declarations

Declarations are translated into a jsp:declaration element. For example, the sec-
ond example from Section JSP.1.12.1:

<%! public String f(int i) { if (i<3) return(“...”); ... } %>

is translated into the following.

<jsp:declaration> <![CDATA[public String f(int i) { if (i<3) return(“...”); }]]> </
jsp:declaration>

Alternatively, we could use an < and instead say:

<jsp:declaration> public String f(int i) { if (i<3) return(“...”); } </jsp:declaration>

JSP.10.1.8 Scriptlets

Scriptlets are translated into a jsp:scriptlet element. In the XML document cor-
responding to JSP pages, directives are represented using the syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

XML View of a JSP Document, JSP Page or Tag File 1-205

JavaServer Pages 2.0 Specification

JSP.10.1.9 Expressions

In the XML document corresponding to JSP pages, directives are represented
using the jsp:expression element:

<jsp:expression> expression goes here </jsp:expression>

JSP.10.1.10 Standard and Custom Actions

The syntax for both standard and action elements is based on XML. The trans-
formations needed are due to quoting conventions and the syntax of request-time
attribute expressions.

JSP.10.1.11 Request-Time Attribute Expressions

Request-time attribute expressions are of the form <%= expression %>.
Although this syntax is consistent with the syntax used elsewhere in a JSP page, it is
not a legal XML syntax. The XML mapping for these expressions is into values of
the form %= expression %, where the JSP specification quoting convention has been
converted to the XML quoting convention.

Request-time attribute values can also be specified using EL expressions of
the form ${expression}. Expressions of this form are represented verbatim in the
XML view.

The XML view of an escaped EL expression can be obtained as follows:

• The XML view of an unescaped expression ${foo} is ${foo}.

• The XML view of an escaped expression \${foo} is \${foo}.

• For each escaped \ preceeding an unescaped expression ${foo}, a ${’\\’} must be
generated in the XML view, and neighboring generated ${’\\’} expressions must
be combined.

Table JSP.10-2 illustrates these rules. Assume the EL expression ${foo}

evaluates to [bar] and that EL is enabled for this translation unit.

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result

${foo} ${foo} [bar]

\${foo} \${foo} ${foo}

XML VIEW1-206

JavaServer Pages 2.0 Specification

JSP.10.1.12 Template Text and XML Elements

All text that is uninterpreted by the JSP translator is converted into the body for
a jsp:text element. As a consequence no XML elements of the form described in
Section JSP.6.3.9, “Template Content” will appear in the XML view of a JSP page
written in JSP syntax.

Because \\ is not an escape sequence within template text in the standard
syntax, no special transformation needs to be done to obtain the XML view of an
escaped EL expression that appears in template text.

Table JSP.10-3 illustrates how the XML view of an escaped EL expression is
obtained. Assume the EL expression ${foo} evaluates to [bar] and that EL is
enabled for this translation unit.

\\${foo} ${’\\’}${foo} \[bar]

\\\${foo} \\${foo} \${foo}

\\\\${foo} ${’\\\\’}${foo} \\[bar]

\\\\\${foo} \\\${foo} \\${foo}

\\\\\\${foo} ${’\\\\\\’}${foo} \\\[bar]

...

Table JSP.10-3 XML View of an Escaped EL Expression in Template Text

Attribute Value XML View Result

${foo} ${foo} [bar]

\${foo} \${foo} ${foo}

\\${foo} \\${foo} \${foo}

\\\${foo} \\\${foo} \\${foo}

...

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time
Attribute Value

Attribute Value XML View Result

XML View of a JSP Document, JSP Page or Tag File 1-207

JavaServer Pages 2.0 Specification

JSP.10.1.13 The jsp:id Attribute

A JSP container must support a jsp:id attribute. This attribute can only be
present in the XML view of a JSP page and can be used to improve the quality of
translation time error messages.

The XML view of any JSP page will have an additional jsp:id attribute added
to all XML elements. This attribute is given a value that is unique over all
elements in the XML view. The prefix for the id attribute need not be "jsp" but it
must map to the namespace http://java.sun.com/JSP/Page. In the case where the
page author has redefined the jsp prefix, an alternative prefix must be used by the
container. See Chapter JSP.13 for more details.

JSP.10.1.14 The tag Directive

The tag directive is applicable to tag files only. A tag directive of the form:

<%@ tag { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.tag { attr=”value” }* />

The value of the pageEncoding attribute is set to "UTF-8". A tag directive and
the pageEncoding attribute are added if they don’t exist already.

JSP.10.1.15 The attribute Directive

The attribute directive is applicable to tag files only. An attribute directive of the
form:

<%@ attribute { attr=”value” }* %>

is translated into an element of the form:

<jsp:directive.attribute { attr=”value” }* />

JSP.10.1.16 The variable Directive

The variable directive is applicable to tag files only. A variable directive of the
form:

<%@ variable { attr=”value” }* %>

XML VIEW1-208

JavaServer Pages 2.0 Specification

is translated into an element of the form:

<jsp:directive.variable { attr=”value” }* />

JSP.10.2 Validating an XML View of a JSP page

The XML view of a JSP page is a namespace-aware document and it cannot be
validated against a DTD except in the most simple cases. To reduce confusion and
possible unintended performance consequences, the XML view of a JSP page will
not include a DOCTYPE.

There are several mechanisms that are aware of namespaces that can be used
to do validation of XML views of JSP pages. The most popular mechanism is the
W3C XML Schema language, but others are also suited, including some very
simple ones that may check, for example, that only some elements are being used,
or, inversely, that they are not used. The TagLibraryValidator for a tag library
permits encapsulating this knowledge with a tag library.

The TagLibraryValidator acts on the XML view of the JSP page. If the page
was authored in JSP syntax, that view does not provide any detail on template data
(all being grouped inside jsp:text elements), but fine detail can be described when
using JSP documents1.

JSP.10.3 Examples

This section presents various examples of XML Views. The first shows a JSP
page in XML syntax that includes XML fragments. The second shows a JSP page in
JSP syntax and its mapping to XML syntax. The three following examples illustrate
the semantics of cross-syntax translation-time includes and the effect on the XML
View.

JSP.10.3.1 A JSP document

This is an example of a very simple JSP document that has some template XML
elements. This particular example describes a table that is a collection of 3 rows,
with numeric values 1, 2, 3. The JSP Standard Tag Library is being used:

1. Similarly, when applying an XSLT transformation to a JSP document,
XML fragments will be plainly visible, while the content of jsp:text ele-
ments will not

Examples 1-209

JavaServer Pages 2.0 Specification

<?xml version="1.0"?>
<table>

<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">

<row>${counter}</row>
</c:forEach>

</table>

JSP.10.3.2 A JSP page and its corresponding XML View

Here is an example of mapping between JSP and XML syntax.
For this JSP page:

<html>
<title>positiveTagLib</title>
<body>

<%@ taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.tld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">
Positive Test taglib directive </eg:test>
</body>
</html>

The XML View of the previous page is:

XML VIEW1-210

JavaServer Pages 2.0 Specification

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
 xmlns:test="urn:jsptld:/tomcat/taglib"
 xmlns:temp="urn:jsptld:/WEB-INF/tlds/my.tld"

version="2.0">

<jsp:text><![CDATA[<html>
<title>positiveTagLib</title>
<body>

]]></jsp:text>
<eg:test toBrowser="true" att1="Working">
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>
<jsp:text><![CDATA[
</body>
</html>
]]></jsp:text>
</jsp:root>

JSP.10.3.3 Clearing Out Default Namespace on Include

This example illustrates the need to clear out the default namespace when doing
a translation-time include of a JSP document:

<!-- a.jspx -->
<elementA>

<tagB xmlns="http://namespace1">
<jsp:directive.include file="b.jspx" />

</tagB>
</elementA>

<!-- b.jspx -->
<elementC />

The resulting XML View for these two JSP documents is:

Examples 1-211

JavaServer Pages 2.0 Specification

<jsp:root>
<elementA>

<tagB xmlns="http://namespace1">
<elementC />

</tagB>
</elementA>

</jsp:root>

JSP.10.3.4 Taglib Direcive Adds to Global Namespace

This example illustrates the effect of the taglib directive on the XML View.
Notice how the taglib directive always affects the <jsp:root> element, independent
of where it is encountered.

<!-- c.jspx -->
<elementD>

<jsp:directive.include file="d.jsp" />
<jsp:directive.include file="e.jsp" />

</elementD>

<%-- d.jsp --%>
<%@ taglib prefix="x" uri="http://namespace2" %>
<x:tagE />

<%-- e.jsp --%>
<x:tagE />

The resulting XML View of these documents and pages is:

<jsp:root xmlns:x="http://namespace2">
<elementD>

<x:tagE />
<x:tagE />

</elementD>
</jsp:root>

JSP.10.3.5 Collective Application of Inclusion Semantics

This example illustrates how the various translation-time include semantics are
collectively applied:

XML VIEW1-212

JavaServer Pages 2.0 Specification

<%-- f.jsp --%>
<%@ taglib prefix="m" uri="http://namespace3" %>
<%@ include file="g.jspx" %>

<!-- g.jspx -->
<tagF xmlns="http://namespace4" />

<y:tagG xmlns:y="http://namespace5">
<tagH />
<jsp:directive.include file="i.jspx" />

</y:tagG>
<jsp:directive.include file="h.jsp" />
<tagI />

</tagF>

<%-- h.jsp --%>
<%@ taglib prefix="n" uri="http://namespace6" %>
<m:tagJ />
<n:tagK />

<!-- i.jspx -->
<jsp:root>

<y:tagL xmlns:y="http://namespace7">
<elementM />
<jsp:directive.include file="h.jsp" />

</y:tagL>
</jsp:root>

The resulting XML View of these documents and pages is:

Examples 1-213

JavaServer Pages 2.0 Specification

<jsp:root xmlns:m="http://namespace3"
xmlns:n="http://namespace6">

<tagF xmlns="http://namespace4">
<y:tagG xmlns:y="http://namespace5">

<tagH />
<y:tagL xmlns="" xmlns:y="http://namespace7">

<elementM />
<m:tagJ />
<n:tagK />

</y:tagL>
</y:tagG>
<m:tagJ />
<n:tagK />
<tagI />

</tagF>
</jsp:root>

XML VIEW1-214

JavaServer Pages 2.0 Specification

2-1JavaServer Pages 2.0 Specification

Part II

The next chapters provide detail specification information on some portions
of the JSP specification that are intended for JSP Container Vendors, JSP Page
authors, and JSP Tag Library authors.

The chapters are normative.
The chapters are

• JSP Container

• Core API

• Tag Extension API

• Expression Language API

2-2

JavaServer Pages 2.0 Specification

2-3JavaServer Pages 2.0 Specification

C H A P T E R JSP.11
JSP Container

This chapter describes the contracts between a JSP container and a JSP page,
including the precompilation protocol and debugging support requirements.

The information in this chapter is independent of the Scripting Language used
in the JSP page. Chapter JSP.9 describes information specific to when the lan-

guage attribute of the page directive has java as its value.).
JSP page implementation classes should use the JspFactory and PageContext

classes to take advantage of platform-specific implementations.

JSP.11.1 JSP Page Model

A JSP page is represented at execution time by a JSP page implementation
object and is executed by a JSP container. The JSP page implementation object is a
servlet. The JSP container delivers requests from a client to a JSP page implementa-
tion object and responses from the JSP page implementation object to the client.

The JSP page describes how to create a response object from a request object
for a given protocol, possibly creating and/or using some other objects in the
process . A JSP page may also indicate how some events are to be handled. In JSP
2.0 only init and destroy events are allowed events.

JSP.11.1.1 Protocol Seen by the Web Server

The JSP container locates the appropriate instance of the JSP page implementa-
tion class and delivers requests to it using the servlet protocol. A JSP container may
need to create such a class dynamically from the JSP page source before delivering
request and response objects to it.

The Servlet class defines the contract between the JSP container and the JSP
page implementation class. When the HTTP protocol is used, the contract is

JSP CONTAINER2-4

JavaServer Pages 2.0 Specification

described by the HttpServlet class. Most JSP pages use the HTTP protocol, but
other protocols are allowed by this specification.

The JSP container automatically makes a number of server-side objects
available to the JSP page implementation object . See Section JSP.1.8.3.

JSP.11.1.1.1 Protocol Seen by the JSP Page Author

The JSP specification defines the contract between the JSP container and the
JSP page author. This contract defines the assumptions an author can make for the
actions described in the JSP page.

The main portion of this contract is the _jspService method that is generated
automatically by the JSP container from the JSP page. The details of this contract
are provided in Chapter JSP.9.

The contract also describes how a JSP author can indicate what actions will be
taken when the init and destroy methods of the page implementation occur. In JSP
2.0 this is done by defining methods with the names jspInit and jspDestroy in a
declaration scripting element in the JSP page. The jspInit method, if present, will
be called to prepare the page before the first request is delivered. Similarly a JSP
container can reclaim resources used by a JSP page when a request is not being
serviced by the JSP page by invoking its jspDestroy method, if present.

A JSP page author may not (re)define servlet methods through a declaration
scripting element.

The JSP specification reserves names for methods and variables starting with
jsp, _jsp, jspx, and _jspx, in any combination of upper and lower case.

JSP.11.1.1.2 The HttpJspPage Interface

The enforcement of the contract between the JSP container and the JSP page
author is aided by the requirement that the Servlet class corresponding to the JSP
page must implement the javax.servlet.jsp.HttpJspPage interface (or the javax.serv-

let.jsp.JspPage interface if the protocol is not HTTP).

JSP Page Implementation Class 2-5

JavaServer Pages 2.0 Specification

Figure JSP.11-1 Contracts between a JSP Page and a JSP Container.

The involved contracts are shown in Figure JSP.11-1. We now revisit this
whole process in more detail.

JSP.11.2 JSP Page Implementation Class

The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.
The JSP Page implementation object belongs to an implementation-dependent

named package. The package used may vary between one JSP and another, so
minimal assumptions should be made.

As of JSP 2.0, it is illegal to refer to any classes from the unnamed (a.k.a.
default) package. This may result in a translation error on some containers,
specifically those that run in a JDK 1.4 or greater environment. It is unfortunate,
but unavoidable, that this will break compatibility with some older JSP
applications. However, as of JDK 1.4, importing classes from the unnamed
package is not valid (see http://java.sun.com/j2se/1.4/compatibility.html#source
for details). Therefore, for forwards compatibility, applications must not rely on
the unnamed package. This restriction also applies for all other cases where
classes are referenced, such as when specifying the class name for a tag in a TLD.

JSP Container JSP Page

jspInit

jspDestroy

_jspService

init event

destroy event

request

response

<%!
public void jspInit()...

public void jspDestroy()...
%>
<html>
This is the response..
</html>

REQUEST PROCESSING TRANSLATION PHASE
PHASE

JSP CONTAINER2-6

JavaServer Pages 2.0 Specification

The JSP container may create the implementation class for a JSP page, or a
superclass may be provided by the JSP page author through the use of the extends

attribute in the page directive.
The extends mechanism is available for sophisticated users. It should be used

with extreme care as it restricts decisions that a JSP container can make. It may
restrict efforts to improve performance, for example.

The JSP page implementation class will implement javax.servlet.Servlet and
requests are delivered to the class as per the rules in the Servlet 2.4 specification.

A JSP page implementation class may depend on support classes. If the JSP
page implementation class is packaged into a WAR, any dependent classes will
have to be included so it will be portable across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server
will communicate using a certain protocol. The JSP container must guarantee that
requests to and responses from the page use that protocol. Most JSP pages use
HTTP, and their implementation classes must implement the HttpJspPage

interface, which extends JspPage. If the protocol is not HTTP, then the class will
implement an interface that extends JspPage.

JSP.11.2.1 API Contracts

The contract between the JSP container and a Java class implementing a JSP
page corresponds to the Servlet interface. Refer to the Servlet 2.4 specification for
details.

The responsibility for adhering to this contract rests on the JSP container
implementation if the JSP page does not use the extends attribute of the jsp

directive. If the extends attribute of the jsp directive is used, the JSP page author
must guarantee that the superclass given in the extends attribute supports this
contract.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

void jspInit() Method is optionally defined in
JSP page.
Method is invoked when the JSP
page is initialized.
When method is called all the
methods in servlet, including get-
ServletConfig are available

JSP Page Implementation Class 2-7

JavaServer Pages 2.0 Specification

JSP.11.2.2 Request and Response Parameters

As shown in Table JSP.11-1, the methods in the contract between the JSP con-
tainer and the JSP page require request and response parameters.

The formal type of the request parameter (which this specification calls
<ServletRequestSubtype>) is an interface that extends javax.servlet.ServletRe-

quest. The interface must define a protocol-dependent request contract between
the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification
calls <ServletResponseSubtype>) is an interface that extends javax.servlet.Servlet-

Response. The interface must define a protocol-dependent response contract
between the JSP container and the class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent
contract between the JSP container and the class that implements the JSP page.
The HTTP contract is defined by the javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe
syntactically the methods involving the Servlet(Request,Response) subtypes.
However, interfaces for specific protocols that extend JspPage can, just as
HttpJspPage describes them for the HTTP protocol.

JSP containers that conform to this specification (in both JSP page
implementation classes and JSP container runtime) must support the request and
response interfaces for the HTTP protocol as described in this section.

void jspDestroy() Method is optionally defined in
JSP page.
Method is invoked before
destroying the page.

void _jspService(<ServletRequestSubtype>,
<ServletResponseSubtype>) throws
IOException, ServletException

Method may not be defined in
JSP page.
The JSP container automatically
generates this method, based on
the contents of the JSP page.
Method invoked at each client
request.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

JSP CONTAINER2-8

JavaServer Pages 2.0 Specification

JSP.11.2.3 Omitting the extends Attribute

If the extends attribute of the page directive (see Section 1.10.1) in a JSP page
is not used, the JSP container can generate any class that satisfies the contract
described in Table JSP.11-1, when it transforms the JSP page.

In the following code examples, Code Example JSP.11-1 illustrates a generic
HTTP superclass named ExampleHttpSuper. Code Example JSP.11-2 shows a
subclass named _jsp1344 that extends ExampleHttpSuper and is the class
generated from the JSP page. By using separate _jsp1344 and ExampleHttpSuper

classes, the JSP page translator does not need to discover whether the JSP page
includes a declaration with jspInit or jspDestroy. This significantly simplifies the
implementation.

Code Example JSP.11-1A Generic HTTP Superclass

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

}

public void jspInit() {
}

public void jspDestroy() {
}

}

final public ServletConfig getServletConfig() {
return config;

}

JSP Page Implementation Class 2-9

JavaServer Pages 2.0 Specification

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return “A Superclass for an HTTP JSP”; // maybe better?
}

final public void destroy() {
jspDestroy();

}

/**
* The entry point into service.
*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, response);
}

/**
* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Code Example JSP.11-2The Java Class Generated From a JSP Page

JSP CONTAINER2-10

JavaServer Pages 2.0 Specification

imports javax.servlet.*;
imports javax.servlet.http.*;
imports javax.servlet.jsp.*;

/**
* An example of a class generated for a JSP.
*
* The name of the class is unpredictable.
* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.
// Any of the following pieces may or not be present
// if they are not defined here the superclass methods
// will be used.

public void jspInit() {....}
public void jspDestroy() {....}

// The next method is generated automatically by the
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// initialization of the implicit variables
// ...

// next is code from scriptlets, expressions, and static text.

}

}

JSP.11.2.4 Using the extends Attribute

If the JSP page author uses extends, the generated class is identical to the one
shown in Code Example JSP.11-2, except that the class name is the one specified in
the extends attribute.

Buffering 2-11

JavaServer Pages 2.0 Specification

The contract on the JSP page implementation class does not change. The JSP
container should check (usually through reflection) that the provided superclass:

• Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

• All of the methods in the Servlet interface are declared final.

Additionally, it is the responsibility of the JSP page author that the provided
superclass satisfies:

• The service method of the servlet API invokes the _jspService method.

• The init(ServletConfig) method stores the configuration, makes it available via
getServletConfig, then invokes jspInit.

• The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the provided
superclass does not satisfy these requirements, but most JSP containers will not
check them.

JSP.11.3 Buffering

The JSP container buffers data (if the jsp directive specifies it using the buffer
attribute) as it is sent from the server to the client. Headers are not sent to the client
until the first flush method is invoked. Therefore, it is possible to call methods that
modify the response header, such as setContentType, sendRedirect, or error meth-
ods, up until the flush method is executed and the headers are sent. After that point,
these methods become invalid, as per the Servlet specification.

The javax.servlet.jsp.JspWriter class buffers and sends output. The JspWriter

class is used in the _jspService method as in the following example:

JSP CONTAINER2-12

JavaServer Pages 2.0 Specification

import javax.servlet.jsp.JspWriter;

static JspFactory _jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

// initialization of implicit variables...
PageContext pageContext = _jspFactory.createPageContext(

this,
request,
response,
false,
PageContext.DEFAULT_BUFFER,
false

);
JSPWriter out = pageContext.getOut();
//
// the body goes here using "out"
//
out.flush();

}

The complete listing of javax.servlet.jsp.JspWriter can be found in
Chapter JSP.12.

With buffering turned on, a redirect method can still be used in a scriptlet in a
.jsp file, by invoking response.redirect(someURL) directly.

JSP.11.4 Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 2.0
compliant containers must support a simple precompilation protocol, as well as
some basic reserved parameter names. Note that the precompilation protocol is
related but not the same as the notion of compiling a JSP page into a Servlet class
(Appendix JSP.A).

JSP.11.4.1 Request Parameter Names

All request parameter names that start with the prefix jsp are reserved by the
JSP specification and should not be used by any user or implementation except as
indicated by the specification.

Debugging Requirements 2-13

JavaServer Pages 2.0 Specification

All JSPs pages should ignore (not depend on) any parameter that starts with
jsp_.

JSP.11.4.2 Precompilation Protocol

A request to a JSP page that has a request parameter with name jsp_precompile

is a precompilation request. The jsp_precompile parameter may have no value, or
may have values true or false. In all cases, the request should not be delivered to the
JSP page.

The intention of the precompilation request is that of a suggestion to the JSP
container to precompile the JSP page into its JSP page implementation class. The
suggestion is conveyed by giving the parameter the value true or no value, but note
that the request can be ignored.

For example:

1. ?jsp_precompile

2. ?jsp_precompile=true

3. ?jsp_precompile=false

4. ?foobar=foobaz&jsp_precompile=true

5. ?foobar=foobaz&jsp_precompile=false

1, 2, and 4 are legal; the request will not be delivered to the page. 3 and 5 are
legal; the request will not be delivered to the page.

6. ?jsp_precompile=foo

This is illegal and will generate an HTTP error; 500 (Server error).

JSP.11.5 Debugging Requirements

With the completion of JSR-045 ("Debugging Support for Other Languages"),
the JSP Compiler now has a standard format to convey source map debugging infor-
mation to tools such as debuggers. See http://jcp.org/jsr/detail/45.jsp for details.

JSP 2.0 containers are strongly recommended, but not required, to be capable
of generating source map debugging information for JSP pages and tag files
written in either standard or XML syntax. The JSP compiler should be able to
produce .class files with a SourceDebugExtension attribute, mapping each line or
lines of JSP code to the corresponding generated line or lines of Java code. For
both pages and tag files, the stratum that maps to the original source should be

JSP CONTAINER2-14

JavaServer Pages 2.0 Specification

named JSP in the Source Debug Extension (this stratum name is reserved for use
by the JSP specification). This stratum should be specified as the default, unless
the page or tag file was generated from some other source.

The exact mechanism for causing the JSP compiler to produce source map
debugging information is currently implementation-dependent. Full runtime
support for JSR-45 (as opposed to only generating the SMAPs that are used at
runtime) will typically only be supported when the JSP container is running in a
J2SE 1.4 or greater environment.

JSP.11.5.1 Line Number Mapping Guidelines

The following is a set of non-normative guidelines for generating high quality
line number mappings. The guidelines are presented to help produce a consistent
debugging experience for page authors, across containers. Where possible the JSP
container should generate line number mappings as follows:

1. Abreakpoint on a JSP line causes execution to stop before any Java code which
amounts to a translation of the JSP line is executed (for one possible exception,
see 5). Note that given the LineInfo Composition Algorithm (see JSR-45 spec-
ification), it is acceptable for the mappings to include one or more Java lines
which are never translated into executable byte code, as long as at least one of
them does.

2. It is permitted for two or more lines of JSP to include the same Java lines in
their mappings.

3. If a line of JSP has no manifestation in the Java source other than white-space
preserving source, it should not be mapped.

■ The following standard syntax JSP entities should not be mapped to gener-
ated code. These entities either have no manifestation in the generated Java
code (e.g. comments), or are not manifest in such a way that it allows the de-
bugged process to stop (e.g. the page directive import):

• JSP comments
• Directives

■ The following XML syntax JSP entities should not be mapped to generated
code. These entities frequently have no manifestation in the generated Java
code.

• <jsp:root>
• <jsp:output>

4. Declarations and scriptlets (standard or XML JSP). Lines in these constructs

Debugging Requirements 2-15

JavaServer Pages 2.0 Specification

should preserve a one-to-one mapping with the corresponding generated code
lines. Empty lines and comment lines are not mapped.

5. For scriptlets, scriptlet expressions, EL expressions, standard actions and cus-
tom actions in template text, a line containing one or more of these entities
should be mapped to Java source lines which include the corresponding Java
code.

If the line starts with template text, the Java code which handles it may be
excluded from the mappings if this would cause the debugger to stop before
the apparent execution of JSP lines preceding the line in question. For exam-
ple:

100 <p>This is a line with template text.</p>
101 <h1><fmt:message key="company" bundle="${bundle}"/></h1>

200 out.write("<p>This is a line with template text.</p>\r\n");
201 out.write("<h1>");
202 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
203 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
204 taghandler.setPageContext(pageContext);
205 ...

In this example, given that <h1> has its own call to write(), it makes sense to
map 101 to 201, 202 etc.

200 out.write("<p>This is a line with template text.</p>\r\n<h1>");
201 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
202 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();
203 taghandler.setPageContext(pageContext);
204 ...

In this second example, given that <h1> is output using the same call to write()
that was used for line 100, mapping 101 to 202, 203 etc. may result in more
intuitive behavior of the debugger.

For scriptlets that contain more than one line, there should be a one-to-one
mapping from JSP to Java lines, and the mapping should start at the first Java
code that is not whitespace or comments. Therefore, a line that contains only
the open scriptlet delimeter is not mapped.

6. Scriptlet expressions and EL expressions in attribute values. The source line
mappings should include any Java source lines that deal with the evaluation of
the rtexpr value as well as source that deals with the JSP action.

JSP CONTAINER2-16

JavaServer Pages 2.0 Specification

7. Standard or custom actions.

■ Empty tags and start tags special case: The jsp:params action typically has
no manifestation and should not be mapped.

■ Empty tags and start tags: The Java line mappings should include as much of
the corresponding Java code as possible, including any separate lines that
deal with rtexpr evaluation as described in (6). If it is not possible to include
all the Java code in the mappings, the mapped lines should include the first
sequential line which deals with either the tag or the attribute evaluation in
order to meet (1).

■ Closing tags frequently do not have a manifestation in the Java source, but
sometimes do. In case a JSP line contains only a closing tag, the line may be
mapped to whitespace preserving Java source if it has no semantic transla-
tion. This will avoid a confusing user experience where it is sometimes pos-
sible to set a breakpoint on a line consisting of a closing tag and sometimes
not.

2-17

C H A P T E R JSP.12
Core API

This chapter describes the javax.servlet.jsp package. The chapter includes
content that is generated automatically from Javadoc embedded into the actual Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

The javax.servlet.jsp package contains a number of classes and interfaces that
describe and define the contracts between a JSP page implementation class and
the runtime environment provided for an instance of such a class by a conforming
JSP container.

JSP.12.1 JSP Page Implementation Object Contract

This section describes the basic contract between a JSP Page implementation
object and its container. The main contract is defined by the classes JspPage and
HttpJspPage. The JspFactory class describes the mechanism to portably instantiate
all needed runtime objects, and JspEngineInfo provides basic information on the cur-
rent JSP container.

None of the classes described here are intended to be used by JSP page
authors; an example of how these classes may be used is included elsewhere in
this chapter.

JSP.12.1.1 JspPage

Syntax
public interface JspPage extends javax.servlet.Servlet

All Known Subinterfaces: HttpJspPage

CORE API2-18

JavaServer Pages 2.0 Specification

All Superinterfaces: javax.servlet.Servlet

Description

The JspPage interface describes the generic interaction that a JSP Page Imple-
mentation class must satisfy; pages that use the HTTP protocol are described by
the HttpJspPage interface.

Two plus One Methods

The interface defines a protocol with 3 methods; only two of them: jspInit() and
jspDestroy() are part of this interface as the signature of the third method: _jsp-
Service() depends on the specific protocol used and cannot be expressed in a
generic way in Java.

A class implementing this interface is responsible for invoking the above methods
at the appropriate time based on the corresponding Servlet-based method invoca-
tions.

The jspInit() and jspDestroy() methods can be defined by a JSP author, but the
_jspService() method is defined automatically by the JSP processor based on the
contents of the JSP page.

_jspService()

The _jspService()method corresponds to the body of the JSP page. This method is
defined automatically by the JSP container and should never be defined by the
JSP page author.

If a superclass is specified using the extends attribute, that superclass may choose
to perform some actions in its service() method before or after calling the
_jspService() method. See using the extends attribute in the JSP_Engine chapter
of the JSP specification.

The specific signature depends on the protocol supported by the JSP page.
public void _jspService(ServletRequestSubtype request,

ServletResponseSubtype response)
throws ServletException, IOException;

JSP.12.1.1.1 Methods

public void jspDestroy()

The jspDestroy() method is invoked when the JSP page is about to be
destroyed. A JSP page can override this method by including a definition for
it in a declaration element. A JSP page should redefine the destroy() method
from Servlet.

JSP Page Implementation Object Contract 2-19

JavaServer Pages 2.0 Specification

public void jspInit()

The jspInit() method is invoked when the JSP page is initialized. It is the
responsibility of the JSP implementation (and of the class mentioned by the
extends attribute, if present) that at this point invocations to the getServlet-
Config() method will return the desired value. A JSP page can override this
method by including a definition for it in a declaration element. A JSP page
should redefine the init() method from Servlet.

JSP.12.1.2 HttpJspPage

Syntax
public interface HttpJspPage extends JspPage

All Superinterfaces: JspPage, javax.servlet.Servlet

Description

The HttpJspPage interface describes the interaction that a JSP Page Implementa-
tion Class must satisfy when using the HTTP protocol.

The behaviour is identical to that of the JspPage, except for the signature of the
_jspService method, which is now expressible in the Java type system and
included explicitly in the interface.

See Also: JspPage

JSP.12.1.2.1 Methods

public void _jspService(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

The _jspService()method corresponds to the body of the JSP page. This
method is defined automatically by the JSP container and should never be
defined by the JSP page author.

If a superclass is specified using the extends attribute, that superclass may
choose to perform some actions in its service() method before or after calling
the _jspService() method. See using the extends attribute in the JSP_Engine
chapter of the JSP specification.

Parameters:
request - Provides client request information to the JSP.

response - Assists the JSP in sending a response to the client.

CORE API2-20

JavaServer Pages 2.0 Specification

Throws:
ServletException - Thrown if an error occurred during the processing of the
JSP and that the container should take appropriate action to clean up the
request.

IOException - Thrown if an error occurred while writing the response for this
page.

JSP.12.1.3 JspFactory

Syntax
public abstract class JspFactory

Description

The JspFactory is an abstract class that defines a number of factory methods
available to a JSP page at runtime for the purposes of creating instances of vari-
ous interfaces and classes used to support the JSP implementation.

A conformant JSP Engine implementation will, during it’s initialization instanti-
ate an implementation dependent subclass of this class, and make it globally
available for use by JSP implementation classes by registering the instance cre-
ated with this class via the static setDefaultFactory() method.

The PageContext and the JspEngineInfo classes are the only implementation-
dependent classes that can be created from the factory.

JspFactory objects should not be used by JSP page authors.

JSP.12.1.3.1 Constructors

public JspFactory()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.1.3.2 Methods

public static synchronized JspFactory getDefaultFactory()

Returns the default factory for this implementation.

Returns: the default factory for this implementation

public abstract JspEngineInfo getEngineInfo()

called to get implementation-specific information on the current JSP engine.

Returns: a JspEngineInfo object describing the current JSP engine

JSP Page Implementation Object Contract 2-21

JavaServer Pages 2.0 Specification

public abstract PageContext getPageContext(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String errorPageURL,
boolean needsSession, int buffer, boolean autoflush)

 obtains an instance of an implementation dependent javax.servlet.jsp.Page-
Context abstract class for the calling Servlet and currently pending request
and response.

This method is typically called early in the processing of the _jspService()
method of a JSP implementation class in order to obtain a PageContext object
for the request being processed.

Invoking this method shall result in the PageContext.initialize() method being
invoked. The PageContext returned is properly initialized.

All PageContext objects obtained via this method shall be released by invok-
ing releasePageContext().

Parameters:
servlet - the requesting servlet

request - the current request pending on the servlet

response - the current response pending on the servlet

errorPageURL - the URL of the error page for the requesting JSP, or null

needsSession - true if the JSP participates in a session

buffer - size of buffer in bytes, PageContext.NO_BUFFER if no buffer,
PageContext.DEFAULT_BUFFER if implementation default.

autoflush - should the buffer autoflush to the output stream on buffer
overflow, or throw an IOException?

Returns: the page context

See Also: PageContext

public abstract void releasePageContext(PageContext pc)

 called to release a previously allocated PageContext object. Results in Page-
Context.release() being invoked. This method should be invoked prior to
returning from the _jspService() method of a JSP implementation class.

Parameters:
pc - A PageContext previously obtained by getPageContext()

public static synchronized void setDefaultFactory(JspFactory deflt)

 set the default factory for this implementation. It is illegal for any principal
other than the JSP Engine runtime to call this method.

Parameters:

CORE API2-22

JavaServer Pages 2.0 Specification

deflt - The default factory implementation

JSP.12.1.4 JspEngineInfo

Syntax
public abstract class JspEngineInfo

Description

The JspEngineInfo is an abstract class that provides information on the current
JSP engine.

JSP.12.1.4.1 Constructors

public JspEngineInfo()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.1.4.2 Methods

public abstract java.lang.String getSpecificationVersion()

Return the version number of the JSP specification that is supported by this
JSP engine.

Specification version numbers that consists of positive decimal integers sepa-
rated by periods “.”, for example, “2.0” or “1.2.3.4.5.6.7”. This allows an
extensible number to be used to represent major, minor, micro, etc versions.
The version number must begin with a number.

Returns: the specification version, null is returned if it is not known

JSP.12.2 Implicit Objects

The PageContext object and the JspWriter are available by default as implicit
objects.

JSP.12.2.1 JspContext

Syntax
public abstract class JspContext

Direct Known Subclasses: PageContext

Implicit Objects 2-23

JavaServer Pages 2.0 Specification

Description

JspContext serves as the base class for the PageContext class and abstracts all
information that is not specific to servlets. This allows for Simple Tag Extensions
to be used outside of the context of a request/response Servlet.

The JspContext provides a number of facilities to the page/component author and
page implementor, including:

•a single API to manage the various scoped namespaces
•a mechanism to obtain the JspWriter for output
•a mechanism to expose page directive attributes to the scripting environ-
ment

Methods Intended for Container Generated Code

The following methods enable the management of nested JspWriter streams to
implement Tag Extensions: pushBody() and popBody()

Methods Intended for JSP authors

Some methods provide uniform access to the diverse objects representing
scopes. The implementation must use the underlying machinery corresponding to
that scope, so information can be passed back and forth between the underlying
environment (e.g. Servlets) and JSP pages. The methods are: setAttribute(), get-
Attribute(), findAttribute(), removeAttribute(), getAttributesScope() and getAttribute-
NamesInScope().

The following methods provide convenient access to implicit objects: getOut()

The following methods provide programmatic access to the Expression Lan-
guage evaluator: getExpressionEvaluator(), getVariableResolver()

Since: 2.0

JSP.12.2.1.1 Constructors

public JspContext()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.2.1.2 Methods

public abstract java.lang.Object findAttribute(java.lang.String name)

Searches for the named attribute in page, request, session (if valid), and appli-
cation scope(s) in order and returns the value associated or null.

Parameters:

CORE API2-24

JavaServer Pages 2.0 Specification

name - the name of the attribute to search for

Returns: the value associated or null

Throws:
NullPointerException - if the name is null

public abstract java.lang.Object getAttribute(java.lang.String name)

Returns the object associated with the name in the page scope or null if not
found.

Parameters:
name - the name of the attribute to get

Returns: the object associated with the name in the page scope or null if not
found.

Throws:
NullPointerException - if the name is null

public abstract java.lang.Object getAttribute(java.lang.String name, int scope)

Return the object associated with the name in the specified scope or null if
not found.

Parameters:
name - the name of the attribute to set

scope - the scope with which to associate the name/object

Returns: the object associated with the name in the specified scope or null
if not found.

Throws:
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid

IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

public abstract java.util.Enumeration getAttributeNamesInScope(int scope)

Enumerate all the attributes in a given scope.

Parameters:
scope - the scope to enumerate all the attributes for

Returns: an enumeration of names (java.lang.String) of all the attributes the
specified scope

Throws:
IllegalArgumentException - if the scope is invalid

Implicit Objects 2-25

JavaServer Pages 2.0 Specification

IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

public abstract int getAttributesScope(java.lang.String name)

Get the scope where a given attribute is defined.

Parameters:
name - the name of the attribute to return the scope for

Returns: the scope of the object associated with the name specified or 0

Throws:
NullPointerException - if the name is null

public abstract ExpressionEvaluator getExpressionEvaluator()

Provides programmatic access to the ExpressionEvaluator. The JSP Con-
tainer must return a valid instance of an ExpressionEvaluator that can parse
EL expressions.

Returns: A valid instance of an ExpressionEvaluator.

Since: 2.0

public abstract JspWriter getOut()

The current value of the out object (a JspWriter).

Returns: the current JspWriter stream being used for client response

public abstract VariableResolver getVariableResolver()

Returns an instance of a VariableResolver that provides access to the implicit
objects specified in the JSP specification using this JspContext as the context
object.

Returns: A valid instance of a VariableResolver.

Since: 2.0

public JspWriter popBody()

Return the previous JspWriter “out” saved by the matching pushBody(), and
update the value of the “out” attribute in the page scope attribute namespace
of the JspContext.

Returns: the saved JspWriter.

public JspWriter pushBody(java.io.Writer writer)

Return a new JspWriter object that sends output to the provided Writer. Saves
the current “out” JspWriter, and updates the value of the “out” attribute in the
page scope attribute namespace of the JspContext.

CORE API2-26

JavaServer Pages 2.0 Specification

The returned JspWriter must implement all methods and behave as though it
were unbuffered. More specifically:

•clear() must throw an IOException
•clearBuffer() does nothing
•getBufferSize() always returns 0
•getRemaining() always returns 0

Parameters:
writer - The Writer for the returned JspWriter to send output to.

Returns: a new JspWriter that writes to the given Writer.

Since: 2.0

public abstract void removeAttribute(java.lang.String name)

Remove the object reference associated with the given name from all scopes.
Does nothing if there is no such object.

Parameters:
name - The name of the object to remove.

Throws:
NullPointerException - if the name is null

public abstract void removeAttribute(java.lang.String name, int scope)

Remove the object reference associated with the specified name in the given
scope. Does nothing if there is no such object.

Parameters:
name - The name of the object to remove.

scope - The scope where to look.

Throws:
IllegalArgumentException - if the scope is invalid

IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

NullPointerException - if the name is null

public abstract void setAttribute(java.lang.String name, java.lang.Object value)

Register the name and value specified with page scope semantics. If the value
passed in is null, this has the same effect as calling removeAttribute(name,
PageContext.PAGE_SCOPE).

Parameters:
name - the name of the attribute to set

Implicit Objects 2-27

JavaServer Pages 2.0 Specification

value - the value to associate with the name, or null if the attribute is to be
removed from the page scope.

Throws:
NullPointerException - if the name is null

public abstract void setAttribute(java.lang.String name, java.lang.Object value,
int scope)

Register the name and value specified with appropriate scope semantics. If
the value passed in is null, this has the same effect as calling removeAttribute(
name, scope).

Parameters:
name - the name of the attribute to set

value - the object to associate with the name, or null if the attribute is to be
removed from the specified scope.

scope - the scope with which to associate the name/object

Throws:
NullPointerException - if the name is null

IllegalArgumentException - if the scope is invalid

IllegalStateException - if the scope is PageContext.SESSION_SCOPE but the
page that was requested does not participate in a session or the session has
been invalidated.

JSP.12.2.2 PageContext

Syntax
public abstract class PageContext extends JspContext

Description

PageContext extends JspContext to provide useful context information for when
JSP technology is used in a Servlet environment.

A PageContext instance provides access to all the namespaces associated with a
JSP page, provides access to several page attributes, as well as a layer above the
implementation details. Implicit objects are added to the pageContext automati-
cally.

The PageContext class is an abstract class, designed to be extended to provide
implementation dependent implementations thereof, by conformant JSP engine
runtime environments. A PageContext instance is obtained by a JSP implementa-

CORE API2-28

JavaServer Pages 2.0 Specification

tion class by calling the JspFactory.getPageContext() method, and is released by
calling JspFactory.releasePageContext().

An example of how PageContext, JspFactory, and other classes can be used
within a JSP Page Implementation object is given elsewhere.

The PageContext provides a number of facilities to the page/component author
and page implementor, including:

•a single API to manage the various scoped namespaces
•a number of convenience API’s to access various public objects
•a mechanism to obtain the JspWriter for output
•a mechanism to manage session usage by the page
•a mechanism to expose page directive attributes to the scripting environment
•mechanisms to forward or include the current request to other active compo-
nents in the application
•a mechanism to handle errorpage exception processing

Methods Intended for Container Generated Code

Some methods are intended to be used by the code generated by the container, not
by code written by JSP page authors, or JSP tag library authors.

The methods supporting lifecycle are initialize() and release()

The following methods enable the management of nested JspWriter streams to
implement Tag Extensions: pushBody()

Methods Intended for JSP authors

The following methods provide convenient access to implicit objects: get-
Exception(), getPage() getRequest(), getResponse(), getSession(), getServlet-
Config() and getServletContext().

The following methods provide support for forwarding, inclusion and error
handling: forward(), include(), and handlePageException().

JSP.12.2.2.1 Fields

public static final java.lang.String APPLICATION

Name used to store ServletContext in PageContext name table.

public static final int APPLICATION_SCOPE

Application scope: named reference remains available in the ServletContext
until it is reclaimed.

public static final java.lang.String CONFIG

Name used to store ServletConfig in PageContext name table.

Implicit Objects 2-29

JavaServer Pages 2.0 Specification

public static final java.lang.String EXCEPTION

Name used to store uncaught exception in ServletRequest attribute list and
PageContext name table.

public static final java.lang.String OUT

Name used to store current JspWriter in PageContext name table.

public static final java.lang.String PAGE

Name used to store the Servlet in this PageContext’s nametables.

public static final int PAGE_SCOPE

Page scope: (this is the default) the named reference remains available in this
PageContext until the return from the current Servlet.service() invocation.

public static final java.lang.String PAGECONTEXT

Name used to store this PageContext in it’s own name table.

public static final java.lang.String REQUEST

Name used to store ServletRequest in PageContext name table.

public static final int REQUEST_SCOPE

Request scope: the named reference remains available from the Servlet-
Request associated with the Servlet until the current request is completed.

public static final java.lang.String RESPONSE

Name used to store ServletResponse in PageContext name table.

public static final java.lang.String SESSION

Name used to store HttpSession in PageContext name table.

public static final int SESSION_SCOPE

Session scope (only valid if this page participates in a session): the named
reference remains available from the HttpSession (if any) associated with the
Servlet until the HttpSession is invalidated.

JSP.12.2.2.2 Constructors

public PageContext()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.12.2.2.3 Methods

public abstract void forward(java.lang.String relativeUrlPath)

This method is used to re-direct, or “forward” the current ServletRequest and
ServletResponse to another active component in the application.

CORE API2-30

JavaServer Pages 2.0 Specification

If the relativeUrlPath begins with a “/” then the URL specified is calculated
relative to the DOCROOT of the ServletContext for this JSP. If the path does
not begin with a “/” then the URL specified is calculated relative to the URL
of the request that was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jsp-
Service(...) method of a JSP.

Once this method has been called successfully, it is illegal for the calling
Thread to attempt to modify the ServletResponse object. Any such attempt
to do so, shall result in undefined behavior. Typically, callers immediately
return from _jspService(...) after calling this method.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource as
described above

Throws:
IllegalStateException - if ServletResponse is not in a state where a forward
can be performed

ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding

public ErrorData getErrorData()

Provides convenient access to error information.

Returns: an ErrorData instance containing information about the error, as
obtained from the request attributes, as per the Servlet specification. If this is
not an error page (that is, if the isErrorPage attribute of the page directive is
not set to “true”), the information is meaningless.

Since: 2.0

public abstract java.lang.Exception getException()

The current value of the exception object (an Exception).

Returns: any exception passed to this as an errorpage

public abstract java.lang.Object getPage()

The current value of the page object (In a Servlet environment, this is an
instance of javax.servlet.Servlet).

Returns: the Page implementation class instance associated with this
PageContext

public abstract javax.servlet.ServletRequest getRequest()

The current value of the request object (a ServletRequest).

Implicit Objects 2-31

JavaServer Pages 2.0 Specification

Returns: The ServletRequest for this PageContext

public abstract javax.servlet.ServletResponse getResponse()

The current value of the response object (a ServletResponse).

Returns: the ServletResponse for this PageContext

public abstract javax.servlet.ServletConfig getServletConfig()

The ServletConfig instance.

Returns: the ServletConfig for this PageContext

public abstract javax.servlet.ServletContext getServletContext()

The ServletContext instance.

Returns: the ServletContext for this PageContext

public abstract javax.servlet.http.HttpSession getSession()

The current value of the session object (an HttpSession).

Returns: the HttpSession for this PageContext or null

public abstract void handlePageException(java.lang.Exception e)

 This method is intended to process an unhandled ’page’ level exception by
forwarding the exception to the specified error page for this JSP. If forward-
ing is not possible (for example because the response has already been com-
mitted), an implementation dependent mechanism should be used to invoke
the error page (e.g. “including” the error page instead).

If no error page is defined in the page, the exception should be rethrown so
that the standard servlet error handling takes over.

A JSP implementation class shall typically clean up any local state prior to
invoking this and will return immediately thereafter. It is illegal to generate
any output to the client, or to modify any ServletResponse state after invok-
ing this call.

This method is kept for backwards compatiblity reasons. Newly generated
code should use PageContext.handlePageException(Throwable).

Parameters:
e - the exception to be handled

Throws:
ServletException - if an error occurs while invoking the error page

IOException - if an I/O error occurred while invoking the error page

NullPointerException - if the exception is null

CORE API2-32

JavaServer Pages 2.0 Specification

See Also: public abstract void
handlePageException(java.lang.Throwable t)

public abstract void handlePageException(java.lang.Throwable t)

 This method is intended to process an unhandled ’page’ level exception by
forwarding the exception to the specified error page for this JSP. If forward-
ing is not possible (for example because the response has already been com-
mitted), an implementation dependent mechanism should be used to invoke
the error page (e.g. “including” the error page instead).

If no error page is defined in the page, the exception should be rethrown so
that the standard servlet error handling takes over.

This method is intended to process an unhandled “page” level exception by
redirecting the exception to either the specified error page for this JSP, or if
none was specified, to perform some implementation dependent action.

A JSP implementation class shall typically clean up any local state prior to
invoking this and will return immediately thereafter. It is illegal to generate
any output to the client, or to modify any ServletResponse state after invok-
ing this call.

Parameters:
t - the throwable to be handled

Throws:
ServletException - if an error occurs while invoking the error page

IOException - if an I/O error occurred while invoking the error page

NullPointerException - if the exception is null

See Also: public abstract void handlePageException(java.lang.Exception
e)

public abstract void include(java.lang.String relativeUrlPath)

 Causes the resource specified to be processed as part of the current Servlet-
Request and ServletResponse being processed by the calling Thread. The
output of the target resources processing of the request is written directly to
the ServletResponse output stream.

The current JspWriter “out” for this JSP is flushed as a side-effect of this call,
prior to processing the include.

If the relativeUrlPath begins with a “/” then the URL specified is calculated
relative to the DOCROOT of the ServletContext for this JSP. If the path does
not begin with a “/” then the URL specified is calculated relative to the URL
of the request that was mapped to the calling JSP.

Implicit Objects 2-33

JavaServer Pages 2.0 Specification

It is only valid to call this method from a Thread executing within a _jsp-
Service(...) method of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be
included

Throws:
ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding

public abstract void include(java.lang.String relativeUrlPath, boolean flush)

 Causes the resource specified to be processed as part of the current Servlet-
Request and ServletResponse being processed by the calling Thread. The
output of the target resources processing of the request is written directly to
the current JspWriter returned by a call to getOut().

If flush is true, The current JspWriter “out” for this JSP is flushed as a side-
effect of this call, prior to processing the include. Otherwise, the JspWriter
“out” is not flushed.

If the relativeUrlPath begins with a “/” then the URL specified is calculated
relative to the DOCROOT of the ServletContext for this JSP. If the path does
not begin with a “/” then the URL specified is calculated relative to the URL
of the request that was mapped to the calling JSP.

It is only valid to call this method from a Thread executing within a _jsp-
Service(...) method of a JSP.

Parameters:
relativeUrlPath - specifies the relative URL path to the target resource to be
included

flush - True if the JspWriter is to be flushed before the include, or false if not.

Throws:
ServletException - if the page that was forwarded to throws a
ServletException

IOException - if an I/O error occurred while forwarding

Since: 2.0

public abstract void initialize(javax.servlet.Servlet servlet,
javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, java.lang.String errorPageURL,
boolean needsSession, int bufferSize, boolean autoFlush)

CORE API2-34

JavaServer Pages 2.0 Specification

 The initialize method is called to initialize an uninitialized PageContext so
that it may be used by a JSP Implementation class to service an incoming
request and response within it’s _jspService() method.

This method is typically called from JspFactory.getPageContext() in order to
initialize state.

This method is required to create an initial JspWriter, and associate the “out”
name in page scope with this newly created object.

This method should not be used by page or tag library authors.

Parameters:
servlet - The Servlet that is associated with this PageContext

request - The currently pending request for this Servlet

response - The currently pending response for this Servlet

errorPageURL - The value of the errorpage attribute from the page directive
or null

needsSession - The value of the session attribute from the page directive

bufferSize - The value of the buffer attribute from the page directive

autoFlush - The value of the autoflush attribute from the page directive

Throws:
IOException - during creation of JspWriter

IllegalStateException - if out not correctly initialized

IllegalArgumentException - If one of the given parameters is invalid

public BodyContent pushBody()

Return a new BodyContent object, save the current “out” JspWriter, and
update the value of the “out” attribute in the page scope attribute namespace
of the PageContext.

Returns: the new BodyContent

public abstract void release()

 This method shall “reset” the internal state of a PageContext, releasing all
internal references, and preparing the PageContext for potential reuse by a
later invocation of initialize(). This method is typically called from Jsp-
Factory.releasePageContext().

Subclasses shall envelope this method.

This method should not be used by page or tag library authors.

Implicit Objects 2-35

JavaServer Pages 2.0 Specification

JSP.12.2.3 JspWriter

Syntax
public abstract class JspWriter extends java.io.Writer

Direct Known Subclasses: BodyContent

Description

The actions and template data in a JSP page is written using the JspWriter object
that is referenced by the implicit variable out which is initialized automatically
using methods in the PageContext object.

This abstract class emulates some of the functionality found in the
java.io.BufferedWriter and java.io.PrintWriter classes, however it differs in that it
throws java.io.IOException from the print methods while PrintWriter does not.

Buffering

The initial JspWriter object is associated with the PrintWriter object of the
ServletResponse in a way that depends on whether the page is or is not buffered.
If the page is not buffered, output written to this JspWriter object will be written
through to the PrintWriter directly, which will be created if necessary by invoking
the getWriter() method on the response object. But if the page is buffered, the
PrintWriter object will not be created until the buffer is flushed and operations
like setContentType() are legal. Since this flexibility simplifies programming sub-
stantially, buffering is the default for JSP pages.

Buffering raises the issue of what to do when the buffer is exceeded. Two
approaches can be taken:

•Exceeding the buffer is not a fatal error; when the buffer is exceeded, just
flush the output.
•Exceeding the buffer is a fatal error; when the buffer is exceeded, raise an
exception.

Both approaches are valid, and thus both are supported in the JSP technology. The
behavior of a page is controlled by the autoFlush attribute, which defaults to true.
In general, JSP pages that need to be sure that correct and complete data has been
sent to their client may want to set autoFlush to false, with a typical case being
that where the client is an application itself. On the other hand, JSP pages that
send data that is meaningful even when partially constructed may want to set
autoFlush to true; such as when the data is sent for immediate display through a
browser. Each application will need to consider their specific needs.

CORE API2-36

JavaServer Pages 2.0 Specification

An alternative considered was to make the buffer size unbounded; but, this had
the disadvantage that runaway computations would consume an unbounded
amount of resources.

The “out” implicit variable of a JSP implementation class is of this type. If the
page directive selects autoflush=“true” then all the I/O operations on this class
shall automatically flush the contents of the buffer if an overflow condition would
result if the current operation were performed without a flush. If autof-
lush=“false” then all the I/O operations on this class shall throw an IOException
if performing the current operation would result in a buffer overflow condition.

See Also: java.io.Writer, java.io.BufferedWriter, java.io.PrintWriter

JSP.12.2.3.1 Fields

protected boolean autoFlush

Whether the JspWriter is autoflushing.

protected int bufferSize

The size of the buffer used by the JspWriter.

public static final int DEFAULT_BUFFER

Constant indicating that the Writer is buffered and is using the implementa-
tion default buffer size.

public static final int NO_BUFFER

Constant indicating that the Writer is not buffering output.

public static final int UNBOUNDED_BUFFER

Constant indicating that the Writer is buffered and is unbounded; this is used
in BodyContent.

JSP.12.2.3.2 Constructors

protected JspWriter(int bufferSize, boolean autoFlush)

Protected constructor.

Parameters:
bufferSize - the size of the buffer to be used by the JspWriter

autoFlush - whether the JspWriter should be autoflushing

JSP.12.2.3.3 Methods

public abstract void clear()

Implicit Objects 2-37

JavaServer Pages 2.0 Specification

Clear the contents of the buffer. If the buffer has been already been flushed
then the clear operation shall throw an IOException to signal the fact that
some data has already been irrevocably written to the client response stream.

Throws:
IOException - If an I/O error occurs

public abstract void clearBuffer()

Clears the current contents of the buffer. Unlike clear(), this method will not
throw an IOException if the buffer has already been flushed. It merely clears
the current content of the buffer and returns.

Throws:
IOException - If an I/O error occurs

public abstract void close()

Close the stream, flushing it first.

This method needs not be invoked explicitly for the initial JspWriter as the
code generated by the JSP container will automatically include a call to
close().

Closing a previously-closed stream, unlike flush(), has no effect.

Overrides: java.io.Writer.close() in class java.io.Writer

Throws:
IOException - If an I/O error occurs

public abstract void flush()

Flush the stream. If the stream has saved any characters from the various
write() methods in a buffer, write them immediately to their intended destina-
tion. Then, if that destination is another character or byte stream, flush it.
Thus one flush() invocation will flush all the buffers in a chain of Writers and
OutputStreams.

The method may be invoked indirectly if the buffer size is exceeded.

Once a stream has been closed, further write() or flush() invocations will
cause an IOException to be thrown.

Overrides: java.io.Writer.flush() in class java.io.Writer

Throws:
IOException - If an I/O error occurs

public int getBufferSize()

This method returns the size of the buffer used by the JspWriter.

Returns: the size of the buffer in bytes, or 0 is unbuffered.

CORE API2-38

JavaServer Pages 2.0 Specification

public abstract int getRemaining()

This method returns the number of unused bytes in the buffer.

Returns: the number of bytes unused in the buffer

public boolean isAutoFlush()

This method indicates whether the JspWriter is autoFlushing.

Returns: if this JspWriter is auto flushing or throwing IOExceptions on
buffer overflow conditions

public abstract void newLine()

Write a line separator. The line separator string is defined by the system prop-
erty line.separator, and is not necessarily a single newline (’\n’) character.

Throws:
IOException - If an I/O error occurs

public abstract void print(boolean b)

Print a boolean value. The string produced by
java.lang.String.valueOf(boolean) is written to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
b - The boolean to be printed

Throws:
java.io.IOException - If an error occured while writing

public abstract void print(char c)

Print a character. The character is written to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
c - The char to be printed

Throws:
java.io.IOException - If an error occured while writing

public abstract void print(char[] s)

Print an array of characters. The characters are written to the JspWriter’s
buffer or, if no buffer is used, directly to the underlying writer.

Parameters:
s - The array of chars to be printed

Throws:
NullPointerException - If s is null

java.io.IOException - If an error occured while writing

Implicit Objects 2-39

JavaServer Pages 2.0 Specification

public abstract void print(double d)

Print a double-precision floating-point number. The string produced by
java.lang.String.valueOf(double) is written to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
d - The double to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Double

public abstract void print(float f)

Print a floating-point number. The string produced by
java.lang.String.valueOf(float) is written to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
f - The float to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Float

public abstract void print(int i)

Print an integer. The string produced by java.lang.String.valueOf(int) is writ-
ten to the JspWriter’s buffer or, if no buffer is used, directly to the underlying
writer.

Parameters:
i - The int to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Integer

public abstract void print(long l)

Print a long integer. The string produced by java.lang.String.valueOf(long) is
written to the JspWriter’s buffer or, if no buffer is used, directly to the under-
lying writer.

Parameters:
l - The long to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Long

CORE API2-40

JavaServer Pages 2.0 Specification

public abstract void print(java.lang.Object obj)

Print an object. The string produced by the java.lang.String.valueOf(Object)
method is written to the JspWriter’s buffer or, if no buffer is used, directly to
the underlying writer.

Parameters:
obj - The Object to be printed

Throws:
java.io.IOException - If an error occured while writing

See Also: java.lang.Object.toString()

public abstract void print(java.lang.String s)

Print a string. If the argument is null then the string “null” is printed. Other-
wise, the string’s characters are written to the JspWriter’s buffer or, if no
buffer is used, directly to the underlying writer.

Parameters:
s - The String to be printed

Throws:
java.io.IOException - If an error occured while writing

public abstract void println()

Terminate the current line by writing the line separator string. The line sepa-
rator string is defined by the system property line.separator, and is not neces-
sarily a single newline character ('\n').

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(boolean x)

Print a boolean value and then terminate the line. This method behaves as
though it invokes public abstract void print(boolean b) and then public abstract
void println() .

Parameters:
x - the boolean to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(char x)

Print a character and then terminate the line. This method behaves as though
it invokes public abstract void print(char c) and then public abstract void
println() .

Parameters:

Implicit Objects 2-41

JavaServer Pages 2.0 Specification

x - the char to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(char[] x)

Print an array of characters and then terminate the line. This method behaves
as though it invokes print(char[]) and then println().

Parameters:
x - the char[] to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(double x)

Print a double-precision floating-point number and then terminate the line.
This method behaves as though it invokes public abstract void print(double d)
and then public abstract void println() .

Parameters:
x - the double to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(float x)

Print a floating-point number and then terminate the line. This method
behaves as though it invokes public abstract void print(float f) and then public
abstract void println() .

Parameters:
x - the float to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(int x)

Print an integer and then terminate the line. This method behaves as though it
invokes public abstract void print(int i) and then public abstract void println() .

Parameters:
x - the int to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(long x)

CORE API2-42

JavaServer Pages 2.0 Specification

Print a long integer and then terminate the line. This method behaves as
though it invokes public abstract void print(long l) and then public abstract void
println() .

Parameters:
x - the long to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(java.lang.Object x)

Print an Object and then terminate the line. This method behaves as though it
invokes public abstract void print(java.lang.Object obj) and then public abstract
void println() .

Parameters:
x - the Object to write

Throws:
java.io.IOException - If an error occured while writing

public abstract void println(java.lang.String x)

Print a String and then terminate the line. This method behaves as though it
invokes public abstract void print(java.lang.String s) and then public abstract
void println() .

Parameters:
x - the String to write

Throws:
java.io.IOException - If an error occured while writing

JSP.12.2.4 ErrorData

Syntax
public final class ErrorData

Description

Contains information about an error, for error pages. The information contained
in this instance is meaningless if not used in the context of an error page. To indi-
cate a JSP is an error page, the page author must set the isErrorPage attribute of
the page directive to “true”.

Since: 2.0

An Implementation Example 2-43

JavaServer Pages 2.0 Specification

See Also: public ErrorData getErrorData()

JSP.12.2.4.1 Constructors

public ErrorData(java.lang.Throwable throwable, int statusCode,
java.lang.String uri, java.lang.String servletName)

Creates a new ErrorData object.

Parameters:
throwable - The Throwable that is the cause of the error

statusCode - The status code of the error

uri - The request URI

servletName - The name of the servlet invoked

JSP.12.2.4.2 Methods

public java.lang.String getRequestURI()

Returns the request URI.

Returns: The request URI

public java.lang.String getServletName()

Returns the name of the servlet invoked.

Returns: The name of the servlet invoked

public int getStatusCode()

Returns the status code of the error.

Returns: The status code of the error

public java.lang.Throwable getThrowable()

Returns the Throwable that caused the error.

Returns: The Throwable that caused the error

JSP.12.3 An Implementation Example

An instance of an implementation dependent subclass of this abstract base class
can be created by a JSP implementation class at the beginning of it’s _jspService()

method via an implementation default JspFactory .
Here is one example of how to use these classes

CORE API2-44

JavaServer Pages 2.0 Specification

public class foo implements Servlet {
// ...
public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
JspFactory factory = JspFactory.getDefaultFactory();
PageContext pageContext = factory.getPageContext(

this,
request,
response,
null, // errorPageURL
false, // needsSession
JspWriter.DEFAULT_BUFFER,
true // autoFlush

);
// initialize implicit variables for scripting env ...
HttpSession session = pageContext.getSession();
JspWriter out = pageContext.getOut();
Object page = this;
try {

// body of translated JSP here ...
} catch (Exception e) {

out.clear();
pageContext.handlePageException(e);

} finally {
out.close();

factory.releasePageContext(pageContext);
}

}

JSP.12.4 Exceptions

The JspException class is the base class for all JSP exceptions. The JspTag-

Exception and SkipPageException exceptions are used by the tag extension mecha-
nism.

JSP.12.4.1 JspException

Syntax
public class JspException extends java.lang.Exception

Direct Known Subclasses: JspTagException, SkipPageException

All Implemented Interfaces: java.io.Serializable

Exceptions 2-45

JavaServer Pages 2.0 Specification

Description

A generic exception known to the JSP engine; uncaught JspExceptions will result
in an invocation of the errorpage machinery.

JSP.12.4.1.1 Constructors

public JspException()

Construct a JspException.

public JspException(java.lang.String msg)

Constructs a new JSP exception with the specified message. The message can
be written to the server log and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

public JspException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception
and include a message about the “root cause” exception that interfered with
its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the servlet’s normal
operation, making this servlet exception necessary

public JspException(java.lang.Throwable rootCause)

Constructs a new JSP exception when the JSP needs to throw an exception
and include a message about the “root cause” exception that interfered with
its normal operation. The exception’s message is based on the localized mes-
sage of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable excep-
tion to get a localized exception message. When subclassing JspException,
this method can be overridden to create an exception message designed for a
specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the JSP’s normal
operation, making the JSP exception necessary

JSP.12.4.1.2 Methods

public java.lang.Throwable getRootCause()

Returns the exception that caused this JSP exception.

CORE API2-46

JavaServer Pages 2.0 Specification

Returns: the Throwable that caused this JSP exception

JSP.12.4.2 JspTagException

Syntax
public class JspTagException extends JspException

All Implemented Interfaces: java.io.Serializable

Description

Exception to be used by a Tag Handler to indicate some unrecoverable error. This
error is to be caught by the top level of the JSP page and will result in an error
page.

JSP.12.4.2.1 Constructors

public JspTagException()

Constructs a new JspTagException with no message.

public JspTagException(java.lang.String msg)

Constructs a new JspTagException with the specified message. The message
can be written to the server log and/or displayed for the user.

Parameters:
msg - a String specifying the text of the exception message

public JspTagException(java.lang.String message,
java.lang.Throwable rootCause)

Constructs a new JspTagException when the JSP Tag needs to throw an
exception and include a message about the “root cause” exception that inter-
fered with its normal operation, including a description message.

Parameters:
message - a String containing the text of the exception message

rootCause - the Throwable exception that interfered with the JSP Tag’s
normal operation, making this JSP Tag exception necessary

Since: 2.0

public JspTagException(java.lang.Throwable rootCause)

Constructs a new JSP Tag exception when the JSP Tag needs to throw an
exception and include a message about the “root cause” exception that inter-

Exceptions 2-47

JavaServer Pages 2.0 Specification

fered with its normal operation. The exception’s message is based on the
localized message of the underlying exception.

This method calls the getLocalizedMessage method on the Throwable excep-
tion to get a localized exception message. When subclassing JspTag-
Exception, this method can be overridden to create an exception message
designed for a specific locale.

Parameters:
rootCause - the Throwable exception that interfered with the JSP Tag’s
normal operation, making the JSP Tag exception necessary

Since: 2.0

JSP.12.4.3 SkipPageException

Syntax
public class SkipPageException extends JspException

All Implemented Interfaces: java.io.Serializable

Description

Exception to indicate the calling page must cease evaluation. Thrown by a simple
tag handler to indicate that the remainder of the page must not be evaluated. The
result is propagated back to the pagein the case where one tag invokes another (as
can be the case with tag files). The effect is similar to that of a Classic Tag Han-
dler returning Tag.SKIP_PAGE from doEndTag(). Jsp Fragments may also throw
this exception. This exception should not be thrown manually in a JSP page or tag
file - the behavior is undefined. The exception is intended to be thrown inside
SimpleTag handlers and in JSP fragments.

Since: 2.0

See Also: public void doTag(), public abstract void invoke(java.io.Writer
out), public int doEndTag()

JSP.12.4.3.1 Constructors

public SkipPageException()

Creates a SkipPageException with no message.

public SkipPageException(java.lang.String message)

CORE API2-48

JavaServer Pages 2.0 Specification

Creates a SkipPageException with the provided message.

Parameters:
message - the detail message

public SkipPageException(java.lang.String message,
java.lang.Throwable rootCause)

Creates a SkipPageException with the provided message and root cause.

Parameters:
message - the detail message

rootCause - the originating cause of this exception

public SkipPageException(java.lang.Throwable rootCause)

Creates a SkipPageException with the provided root cause.

Parameters:
rootCause - the originating cause of this exception

2-49

C H A P T E R JSP.13
Tag Extension API

This chapter describes the details of tag handlers and other tag extension
classes as well as methods that are available to access the Tag Library Descriptor
files. This complements a previous chapter that described the Tag Library Descrip-
tor files formats and their use in taglib directives.

This chapter includes content that is generated automatically from javadoc
embedded into the actual Java classes and interfaces. This allows the creation of a
single, authoritative, specification document.

Custom actions can be used by JSP authors and authoring tools to simplify
writing JSP pages. A custom action can be either an empty or a non-empty action.

An empty tag has no body. There are two equivalent syntaxes, one with
separate start and an end tag, and one where the start and end tags are combined.
The two following examples are identical:

<x:foo att=“myObject” />
<x:foo att=“myObject” ></foo>
A non-empty tag has a start tag, a body, and an end tag. A prototypical example

is of the form:
<x:foo att=“myObject” >
BODY

</x:foo/>
The JavaServer Pages(tm) (JSP) 1.2 specification provides a portable mecha-

nism for the description of tag libraries containing:
•A Tag Library Descriptor (TLD)
•A number of Tag handler classes defining request-time behavior
•A number of classes defining translation-time behavior
•Additional resources used by the classes

This chapter is organized in three sections. The first section presents the basic
tag handler classes. The second section describes the more complex tag handlers
that need to access their body evaluation. The last section looks at translation-time
issues.

TAG EXTENSION API2-50

JavaServer Pages 2.0 Specification

JSP.13.1 Classic Tag Handlers

This section introduces the notion of a tag handler and describes the classic
types of tag handler.

JSP 2.0 introduces a new type of Tag Handler called a Simple Tag Handler,
which is described in a later section in this chapter. The protocol for Simple Tag
handlers is much more straightforward.

Tag Handler
A tag handler is a run-time, container-managed, object that evaluates custom

actions during the execution of a JSP page. A tag handler supports a protocol that
allows the JSP container to provide good integration of the server-side actions
within a JSP page.

A tag handler is created initially using a zero argument constructor on its
corresponding class; the method java.beans.Beans.instantiate() is not used.

A tag handler has some properties that are exposed to the page as attributes on
an action; these properties are managed by the JSP container (via generated code).
The setter methods used to set the properties are discovered using the JavaBeans
introspector machinery.

The protocol supported by a tag handler provides for passing of parameters,
the evaluation and reevaluation of the body of the action, and for getting access to
objects and other tag handlers in the JSP page.

A tag handler instance is responsible for processing one request at a time. It is
the responsability of the JSP container to enforce this.

Additional translation time information associated with the action indicates
the name of any scripting variables it may introduce, their types and their scope.
At specific moments, the JSP container will automatically synchronize the Page-
Context information with variables in the scripting language so they can be made
available directly through the scripting elements.

Properties
A tag handler has some properties. All tag handlers have a pageContext prop-

erty for the JSP page where the tag is located, and a parent property for the tag han-
dler to the closest enclosing action. Specific tag handler classes may have additional
properties.

All attributes of a custom action must be JavaBeans component properties,
although some properties may not be exposed as attributes. The attributes that are
visible to the JSP translator are exactly those listed in the Tag Library Descriptor
(TLD).

Classic Tag Handlers 2-51

JavaServer Pages 2.0 Specification

All properties of a tag handler instance exposed as attributes will be initialized
by the container using the appropriate setter methods before the instance can be
used to perform the action methods. It is the responsibility of the JSP container to
invoke the appropriate setter methods to initialize these properties. It is the
responsability of user code, be it scriptlets, JavaBeans code, or code inside custom
tags, to not invoke these setter methods, as doing otherwise would interfere with
the container knowledge.

The setter methods that should be used when assigning a value to an attribute
of a custom action are determined by using the JavaBeans introspector on the tag
handler class, then use the setter method associated with the property that has the
same name as the attribute in question. An implication (unclear in the JavaBeans
specification) is that there is only one setter per property.

Unspecified attributes/properties should not be set (using a setter method).
Once properly set, all properties are expected to be persistent, so that if the

JSP container ascertains that a property has already been set on a given tag
handler instance, it must not set it again.

The JSP container may reuse classic tag handler instances for multiple
occurrences of the corresponding custom action, in the same page or in different
pages, but only if the same set of attributes are used for all occurrences. If a tag
handler is used for more than one occurence, the container must reset all attributes
where the values differ between the custom action occurrences. Attributes with
the same value in all occurrences must not be reset. If an attribute value is set as a
request-time attribute value (using a scripting or an EL expression), the container
must reset the attribute between all reuses of the tag handler instance.

User code can access property information and access and modify tag handler
internal state starting with the first action method (doStartTag) up until the last
action method (doEndTag or doFinally for tag handlers implementing TryCatch-
Finally).

Tag Handler as a Container-Managed Object
Since a tag handler is a container managed object, the container needs to main-

tain its references; specifically, user code should not keep references to a tag handler
except between the start of the first action method (doStartTag()) and the end of the
last action method (doEndTag() or doFinally() for those tags that implement Try-
CatchFinally).

The restrictions on references to tag handler objects and on modifying
attribute properties gives the JSP container substantial freedom in effectively
managing tag handler objects to achieve different goals. For example, a container
may implementing different pooling strategies to minimize creation cost, or may

TAG EXTENSION API2-52

JavaServer Pages 2.0 Specification

hoist setting of properties to reduce cost when a tag handler is inside another
iterative tag.

Conversions
A tag handler implements an action; the JSP container must follow the type

conversions described in Section 2.13.2 when assigning values to the attributes of an
action.

Empty and Non-Empty Actions
An empty action has no body; it may use one of two syntaxes: either <foo/> or

<foo></foo>. Since empty actions have no body the methods related to body manip-
ulation are not invoked. There is a mechanism in the Tag Library Descriptor to indi-
cate that a tag can only be used to write empty actions; when used, non-empty
actions using that tag will produce a translation error.

A non-empty action has a body.

The Tag Interface
A Tag handler that does not want to process its body can implement just the Tag

interface. A tag handler may not want to process its body because it is an empty tag
or because the body is just to be “passed through”.

The Tag interface includes methods to provide page context information to the
Tag Handler instance, methods to handle the life-cycle of tag handlers, and two
main methods for performing actions on a tag: doStartTag() and doEndTag(). The
method doStartTag() is invoked when encountering the start tag and its return value
indicates whether the body (if there is any) should be skipped, or evaluated and
passed through to the current response stream. The method doEndTag() is invoked
when encountering the end tag; its return value indicates whether the rest of the
page should continue to be evaluated or not.

If an exception is encountered during the evaluation of the body of a tag, its
doEndTag method will not be evaluated. See the TryCatchFinally tag for methods
that are guaranteed to be evaluated.

The IterationTag Interface
The IterationTag interface is used to repeatedly reevaluate the body of a custom

action. The interface has one method: doAfterBody() which is invoked after each
evaluation of the body to determine whether to reevaluate or not.

Reevaluation is requested with the value 2, which in JSP 1.1 is defined to be
BodyTag.EVAL_BODY_TAG. That constant value is still kept in JSP 1.2 (for full
backwards compatibility) but, to improve clarity, a new name is also available:

Classic Tag Handlers 2-53

JavaServer Pages 2.0 Specification

IterationTag.EVAL_BODY_AGAIN. To stop iterating, the returned value should
be 0, which is Tag.SKIP_BODY.

The TagSupport Base Class
The TagSupport class is a base class that can be used when implementing the

Tag or IterationTag interfaces.

JSP.13.1.1 JspTag

Syntax
public interface JspTag

All Known Subinterfaces: BodyTag, IterationTag, SimpleTag, Tag

Description

Serves as a base class for Tag and SimpleTag. This is mostly for organizational
and type-safety purposes.

Since: 2.0

JSP.13.1.2 Tag

Syntax
public interface Tag extends JspTag

All Known Subinterfaces: BodyTag, IterationTag

All Superinterfaces: JspTag

All Known Implementing Classes: TagAdapter

Description

The interface of a classic tag handler that does not want to manipulate its body.
The Tag interface defines the basic protocol between a Tag handler and JSP page
implementation class. It defines the life cycle and the methods to be invoked at
start and end tag.

Properties

TAG EXTENSION API2-54

JavaServer Pages 2.0 Specification

The Tag interface specifies the setter and getter methods for the core pageContext
and parent properties.

The JSP page implementation object invokes setPageContext and setParent, in
that order, before invoking doStartTag() or doEndTag().

Methods

There are two main actions: doStartTag and doEndTag. Once all appropriate
properties have been initialized, the doStartTag and doEndTag methods can be
invoked on the tag handler. Between these invocations, the tag handler is assumed
to hold a state that must be preserved. After the doEndTag invocation, the tag han-
dler is available for further invocations (and it is expected to have retained its
properties).

Lifecycle

Lifecycle details are described by the transition diagram below, with the follow-
ing comments:

•[1] This transition is intended to be for releasing long-term data. no guaran-
tees are assumed on whether any properties have been retained or not.
•[2] This transition happens if and only if the tag ends normally without rais-
ing an exception
•[3] Some setters may be called again before a tag handler is reused. For
instance, setParent() is called if it’s reused within the same page but at a dif-
ferent level, setPageContext() is called if it’s used in another page, and
attribute setters are called if the values differ or are expressed as request-time
attribute values.
•Check the TryCatchFinally interface for additional details related to excep-
tion handling and resource management.

Classic Tag Handlers 2-55

JavaServer Pages 2.0 Specification

Once all invocations on the tag handler are completed, the release method is
invoked on it. Once a release method is invoked all properties, including parent
and pageContext, are assumed to have been reset to an unspecified value. The
page compiler guarantees that release() will be invoked on the Tag handler before
the handler is released to the GC.

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an
empty action, by an <body-content> entry of “empty”, then the doStartTag()
method must return SKIP_BODY.

Otherwise, the doStartTag() method may return SKIP_BODY or
EVAL_BODY_INCLUDE.

TAG EXTENSION API2-56

JavaServer Pages 2.0 Specification

If SKIP_BODY is returned the body, if present, is not evaluated.

If EVAL_BODY_INCLUDE is returned, the body is evaluated and “passed
through” to the current out.

JSP.13.1.2.1 Fields

public static final int EVAL_BODY_INCLUDE

Evaluate body into existing out stream. Valid return value for doStartTag.

public static final int EVAL_PAGE

Continue evaluating the page. Valid return value for doEndTag().

public static final int SKIP_BODY

Skip body evaluation. Valid return value for doStartTag and doAfterBody.

public static final int SKIP_PAGE

Skip the rest of the page. Valid return value for doEndTag.

JSP.13.1.2.2 Methods

public int doEndTag()

Process the end tag for this instance. This method is invoked by the JSP page
implementation object on all Tag handlers.

This method will be called after returning from doStartTag. The body of the
action may or may not have been evaluated, depending on the return value of
doStartTag.

If this method returns EVAL_PAGE, the rest of the page continues to be eval-
uated. If this method returns SKIP_PAGE, the rest of the page is not evalu-
ated, the request is completed, and the doEndTag() methods of enclosing tags
are not invoked. If this request was forwarded or included from another page
(or Servlet), only the current page evaluation is stopped.

The JSP container will resynchronize the values of any AT_BEGIN and
AT_END variables (defined by the associated TagExtraInfo or TLD) after the
invocation of doEndTag().

Returns: indication of whether to continue evaluating the JSP page.

Throws:
JspException - if an error occurred while processing this tag

public int doStartTag()

Process the start tag for this instance. This method is invoked by the JSP page
implementation object.

Classic Tag Handlers 2-57

JavaServer Pages 2.0 Specification

The doStartTag method assumes that the properties pageContext and parent
have been set. It also assumes that any properties exposed as attributes have
been set too. When this method is invoked, the body has not yet been evalu-
ated.

This method returns Tag.EVAL_BODY_INCLUDE or Body-
Tag.EVAL_BODY_BUFFERED to indicate that the body of the action
should be evaluated or SKIP_BODY to indicate otherwise.

When a Tag returns EVAL_BODY_INCLUDE the result of evaluating the
body (if any) is included into the current “out” JspWriter as it happens and
then doEndTag() is invoked.

BodyTag.EVAL_BODY_BUFFERED is only valid if the tag handler imple-
ments BodyTag.

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtraInfo or TLD) after the
invocation of doStartTag(), except for a tag handler implementing BodyTag
whose doStartTag() method returns BodyTag.EVAL_BODY_BUFFERED.

Returns: EVAL_BODY_INCLUDE if the tag wants to process body,
SKIP_BODY if it does not want to process it.

Throws:
JspException - if an error occurred while processing this tag

See Also: BodyTag

public Tag getParent()

Get the parent (closest enclosing tag handler) for this tag handler.

The getParent() method can be used to navigate the nested tag handler struc-
ture at runtime for cooperation among custom actions; for example, the find-
AncestorWithClass() method in TagSupport provides a convenient way of
doing this.

The current version of the specification only provides one formal way of indi-
cating the observable type of a tag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. This is
extended in an informal manner by allowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, as in the case of the JSP standard tag library.

Returns: the current parent, or null if none.

See Also: public static final Tag findAncestorWithClass(Tag from,
java.lang.Class klass)

TAG EXTENSION API2-58

JavaServer Pages 2.0 Specification

public void release()

Called on a Tag handler to release state. The page compiler guarantees that
JSP page implementation objects will invoke this method on all tag handlers,
but there may be multiple invocations on doStartTag and doEndTag in
between.

public void setPageContext(PageContext pc)

Set the current page context. This method is invoked by the JSP page imple-
mentation object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a
page implementation if it changes between calls to doStartTag().

Parameters:
pc - The page context for this tag handler.

public void setParent(Tag t)

Set the parent (closest enclosing tag handler) of this tag handler. Invoked by
the JSP page implementation object prior to doStartTag().

This value is *not* reset by doEndTag() and must be explicitly reset by a
page implementation.

Parameters:
t - The parent tag, or null.

JSP.13.1.3 IterationTag

Syntax
public interface IterationTag extends Tag

All Known Subinterfaces: BodyTag

All Superinterfaces: JspTag, Tag

All Known Implementing Classes: TagSupport

Description

The IterationTag interface extends Tag by defining one additional method that
controls the reevaluation of its body.

Classic Tag Handlers 2-59

JavaServer Pages 2.0 Specification

A tag handler that implements IterationTag is treated as one that implements Tag
regarding the doStartTag() and doEndTag() methods. IterationTag provides a new
method: doAfterBody().

The doAfterBody() method is invoked after every body evaluation to control
whether the body will be reevaluated or not. If doAfterBody() returns Iteration-
Tag.EVAL_BODY_AGAIN, then the body will be reevaluated. If doAfterBody()
returns Tag.SKIP_BODY, then the body will be skipped and doEndTag() will be
evaluated instead.

Properties There are no new properties in addition to those in Tag.

Methods There is one new methods: doAfterBody().

Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), BODY and doAfterBody()
interrupt the execution sequence and are propagated up the stack, unless the tag
handler implements the TryCatchFinally interface; see that interface for details.

TAG EXTENSION API2-60

JavaServer Pages 2.0 Specification

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an
empty element body, by a <body-content> entry of “empty”, then the doStart-
Tag() method must return SKIP_BODY.

Note that which methods are invoked after the doStartTag() depends on both the
return value and on if the custom action element is empty or not in the JSP page,
not on how it’s declared in the TLD.

If SKIP_BODY is returned the body is not evaluated, and then doEndTag() is
invoked.

If EVAL_BODY_INCLUDE is returned, and the custom action element is not
empty, the body is evaluated and “passed through” to the current out, then
doAfterBody() is invoked and, after zero or more iterations, doEndTag() is
invoked.

JSP.13.1.3.1 Fields

public static final int EVAL_BODY_AGAIN

Request the reevaluation of some body. Returned from doAfterBody. For
compatibility with JSP 1.1, the value is carefully selected to be the same as
the, now deprecated, BodyTag.EVAL_BODY_TAG,

JSP.13.1.3.2 Methods

public int doAfterBody()

Process body (re)evaluation. This method is invoked by the JSP Page imple-
mentation object after every evaluation of the body into the BodyEvaluation
object. The method is not invoked if there is no body evaluation.

If doAfterBody returns EVAL_BODY_AGAIN, a new evaluation of the body
will happen (followed by another invocation of doAfterBody). If doAfter-
Body returns SKIP_BODY, no more body evaluations will occur, and the
doEndTag method will be invoked.

If this tag handler implements BodyTag and doAfterBody returns
SKIP_BODY, the value of out will be restored using the popBody method in
pageContext prior to invoking doEndTag.

The method re-invocations may be lead to different actions because there
might have been some changes to shared state, or because of external compu-
tation.

Classic Tag Handlers 2-61

JavaServer Pages 2.0 Specification

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtraInfo or TLD) after the
invocation of doAfterBody().

Returns: whether additional evaluations of the body are desired

Throws:
JspException - if an error occurred while processing this tag

JSP.13.1.4 TryCatchFinally

Syntax
public interface TryCatchFinally

Description

The auxiliary interface of a Tag, IterationTag or BodyTag tag handler that wants
additional hooks for managing resources.

This interface provides two new methods: doCatch(Throwable) and doFinally().
The prototypical invocation is as follows:
h = get a Tag(); // get a tag handler, perhaps from pool
h.setPageContext(pc); // initialize as desired
h.setParent(null);
h.setFoo(“foo”);

// tag invocation protocol; see Tag.java
try {
doStartTag()...
....
doEndTag()...

} catch (Throwable t) {
// react to exceptional condition
h.doCatch(t);

} finally {
// restore data invariants and release per-invocation resources
h.doFinally();

}

... other invocations perhaps with some new setters

...
h.release(); // release long-term resources

JSP.13.1.4.1 Methods

public void doCatch(java.lang.Throwable t)

TAG EXTENSION API2-62

JavaServer Pages 2.0 Specification

Invoked if a Throwable occurs while evaluating the BODY inside a tag or in
any of the following methods: Tag.doStartTag(), Tag.doEndTag(), Iteration-
Tag.doAfterBody() and BodyTag.doInitBody().

This method is not invoked if the Throwable occurs during one of the setter
methods.

This method may throw an exception (the same or a new one) that will be
propagated further up the nest chain. If an exception is thrown, doFinally()
will be invoked.

This method is intended to be used to respond to an exceptional condition.

Parameters:
t - The throwable exception navigating through this tag.

Throws:
Throwable - if the exception is to be rethrown further up the nest chain.

public void doFinally()

Invoked in all cases after doEndTag() for any class implementing Tag,
IterationTag or BodyTag. This method is invoked even if an exception has
occurred in the BODY of the tag, or in any of the following methods:
Tag.doStartTag(), Tag.doEndTag(), IterationTag.doAfterBody() and Body-
Tag.doInitBody().

This method is not invoked if the Throwable occurs during one of the setter
methods.

This method should not throw an Exception.

This method is intended to maintain per-invocation data integrity and
resource management actions.

JSP.13.1.5 TagSupport

Syntax
public class TagSupport implements IterationTag, java.io.Serializable

Direct Known Subclasses: BodyTagSupport

All Implemented Interfaces: IterationTag, JspTag, java.io.Serializable,
Tag

Description

A base class for defining new tag handlers implementing Tag.

Classic Tag Handlers 2-63

JavaServer Pages 2.0 Specification

The TagSupport class is a utility class intended to be used as the base class for
new tag handlers. The TagSupport class implements the Tag and IterationTag
interfaces and adds additional convenience methods including getter methods for
the properties in Tag. TagSupport has one static method that is included to facili-
tate coordination among cooperating tags.

Many tag handlers will extend TagSupport and only redefine a few methods.

JSP.13.1.5.1 Fields

protected java.lang.String id

The value of the id attribute of this tag; or null.

protected PageContext pageContext

The PageContext.

JSP.13.1.5.2 Constructors

public TagSupport()

Default constructor, all subclasses are required to define only a public con-
structor with the same signature, and to call the superclass constructor. This
constructor is called by the code generated by the JSP translator.

JSP.13.1.5.3 Methods

public int doAfterBody()

Default processing for a body.

Returns: SKIP_BODY

Throws:
JspException - if an error occurs while processing this tag

See Also: public int doAfterBody()

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Returns: EVAL_PAGE

Throws:
JspException - if an error occurs while processing this tag

See Also: public int doEndTag()

public int doStartTag()

Default processing of the start tag, returning SKIP_BODY.

TAG EXTENSION API2-64

JavaServer Pages 2.0 Specification

Returns: SKIP_BODY

Throws:
JspException - if an error occurs while processing this tag

See Also: public int doStartTag()

public static final Tag findAncestorWithClass(Tag from, java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance. This
method uses the getParent method from the Tag interface. This method is
used for coordination among cooperating tags.

The current version of the specification only provides one formal way of indi-
cating the observable type of a tag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. This is
extended in an informal manner by allowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, as in the case of the JSP standard tag library.

When a tag library author provides information on the observable type of a
tag handler, client programmatic code should adhere to that constraint. Spe-
cifically, the Class passed to findAncestorWithClass should be a subtype of
the observable type.

Parameters:
from - The instance from where to start looking.

klass - The subclass of Tag or interface to be matched

Returns: the nearest ancestor that implements the interface or is an instance
of the class specified

public java.lang.String getId()

The value of the id attribute of this tag; or null.

Returns: the value of the id attribute, or null

public Tag getParent()

The Tag instance most closely enclosing this tag instance.

Returns: the parent tag instance or null

See Also: public Tag getParent()

public java.lang.Object getValue(java.lang.String k)

Get a the value associated with a key.

Parameters:

Classic Tag Handlers 2-65

JavaServer Pages 2.0 Specification

k - The string key.

Returns: The value associated with the key, or null.

public java.util.Enumeration getValues()

Enumerate the keys for the values kept by this tag handler.

Returns: An enumeration of all the keys for the values set, or null or an
empty Enumeration if no values have been set.

public void release()

Release state.

See Also: public void release()

public void removeValue(java.lang.String k)

Remove a value associated with a key.

Parameters:
k - The string key.

public void setId(java.lang.String id)

Set the id attribute for this tag.

Parameters:
id - The String for the id.

public void setPageContext(PageContext pageContext)

Set the page context.

Parameters:
pageContext - The PageContext.

See Also: public void setPageContext(PageContext pc)

public void setParent(Tag t)

Set the nesting tag of this tag.

Parameters:
t - The parent Tag.

See Also: public void setParent(Tag t)

public void setValue(java.lang.String k, java.lang.Object o)

Associate a value with a String key.

Parameters:
k - The key String.

o - The value to associate.

TAG EXTENSION API2-66

JavaServer Pages 2.0 Specification

JSP.13.2 Tag Handlers that want Access to their Body
Content

The evaluation of a body is delivered into a BodyContent object. This is then
made available to tag handlers that implement the BodyTag interface. The BodyTag-

Support class provides a useful base class to simplify writing these handlers.
If a Tag handler wants to have access to the content of its body then it must

implement the BodyTag interface. This interface extends IterationTag, provides
two additional methods setBodyContent(BodyContent) and doInitBody() and refers to
an object of type BodyContent.

A BodyContent is a subclass of JspWriter that has a few additional methods to
convert its contents into a String, insert the contents into another JspWriter, to get
a Reader into its contents, and to clear the contents. Its semantics also assure that
buffer size will never be exceeded.

The JSP page implementation will create a BodyContent if the doStartTag()
method returns a EVAL_BODY_BUFFERED. This object will be passed to
doInitBody(); then the body of the tag will be evaluated, and during that
evaluation out will be bound to the BodyContent just passed to the BodyTag
handler. Then doAfterBody() will be evaluated. If that method returns
SKIP_BODY, no more evaluations of the body will be done; if the method returns
EVAL_BODY_AGAIN, then the body will be evaluated, and doAfterBody() will
be invoked again.

The content of a BodyContent instance remains available until after the
invocation of its associated doEndTag() method.

A common use of the BodyContent is to extract its contents into a String and
then use the String as a value for some operation. Another common use is to take
its contents and push it into the out Stream that was valid when the start tag was
encountered (that is available from the PageContext object passed to the handler
in setPageContext).

JSP.13.2.1 BodyContent

Syntax
public abstract class BodyContent extends JspWriter

Description

An encapsulation of the evaluation of the body of an action so it is available to a
tag handler. BodyContent is a subclass of JspWriter.

Tag Handlers that want Access to their Body Content 2-67

JavaServer Pages 2.0 Specification

Note that the content of BodyContent is the result of evaluation, so it will not con-
tain actions and the like, but the result of their invocation.

BodyContent has methods to convert its contents into a String, to read its con-
tents, and to clear the contents.

The buffer size of a BodyContent object is unbounded. A BodyContent object
cannot be in autoFlush mode. It is not possible to invoke flush on a BodyContent
object, as there is no backing stream.

Instances of BodyContent are created by invoking the pushBody and popBody
methods of the PageContext class. A BodyContent is enclosed within another
JspWriter (maybe another BodyContent object) following the structure of their
associated actions.

A BodyContent is made available to a BodyTag through a setBodyContent() call.
The tag handler can use the object until after the call to doEndTag().

JSP.13.2.1.1 Constructors

protected BodyContent(JspWriter e)

Protected constructor. Unbounded buffer, no autoflushing.

Parameters:
e - the enclosing JspWriter

JSP.13.2.1.2 Methods

public void clearBody()

Clear the body without throwing any exceptions.

public void flush()

Redefined flush() so it is not legal.

It is not valid to flush a BodyContent because there is no backing stream
behind it.

Overrides: public abstract void flush() in class JspWriter

Throws:
IOException - always thrown

public JspWriter getEnclosingWriter()

Get the enclosing JspWriter.

Returns: the enclosing JspWriter passed at construction time

public abstract java.io.Reader getReader()

Return the value of this BodyContent as a Reader.

TAG EXTENSION API2-68

JavaServer Pages 2.0 Specification

Returns: the value of this BodyContent as a Reader

public abstract java.lang.String getString()

Return the value of the BodyContent as a String.

Returns: the value of the BodyContent as a String

public abstract void writeOut(java.io.Writer out)

Write the contents of this BodyContent into a Writer. Subclasses may opti-
mize common invocation patterns.

Parameters:
out - The writer into which to place the contents of this body evaluation

Throws:
IOException - if an I/O error occurred while writing the contents of this
BodyContent to the given Writer

JSP.13.2.2 BodyTag

Syntax
public interface BodyTag extends IterationTag

All Superinterfaces: IterationTag, JspTag, Tag

All Known Implementing Classes: BodyTagSupport

Description

The BodyTag interface extends IterationTag by defining additional methods that
let a tag handler manipulate the content of evaluating its body.

It is the responsibility of the tag handler to manipulate the body content. For
example the tag handler may take the body content, convert it into a String using
the bodyContent.getString method and then use it. Or the tag handler may take
the body content and write it out into its enclosing JspWriter using the body-
Content.writeOut method.

A tag handler that implements BodyTag is treated as one that implements
IterationTag, except that the doStartTag method can return SKIP_BODY,
EVAL_BODY_INCLUDE or EVAL_BODY_BUFFERED.

If EVAL_BODY_INCLUDE is returned, then evaluation happens as in Iteration-
Tag.

Tag Handlers that want Access to their Body Content 2-69

JavaServer Pages 2.0 Specification

If EVAL_BODY_BUFFERED is returned, then a BodyContent object will be
created (by code generated by the JSP compiler) to capture the body evaluation.
The code generated by the JSP compiler obtains the BodyContent object by call-
ing the pushBody method of the current pageContext, which additionally has the
effect of saving the previous out value. The page compiler returns this object by
calling the popBody method of the PageContext class; the call also restores the
value of out.

The interface provides one new property with a setter method and one new action
method.

Properties

There is a new property: bodyContent, to contain the BodyContent object, where
the JSP Page implementation object will place the evaluation (and reevaluation, if
appropriate) of the body. The setter method (setBodyContent) will only be
invoked if doStartTag() returns EVAL_BODY_BUFFERED and the correspond-
ing action element does not have an empty body.

Methods

In addition to the setter method for the bodyContent property, there is a new
action method: doInitBody(), which is invoked right after setBodyContent() and
before the body evaluation. This method is only invoked if doStartTag() returns
EVAL_BODY_BUFFERED.

Lifecycle

Lifecycle details are described by the transition diagram below. Exceptions that
are thrown during the computation of doStartTag(), setBodyContent(), doInit-
Body(), BODY, doAfterBody() interrupt the execution sequence and are propa-
gated up the stack, unless the tag handler implements the TryCatchFinally
interface; see that interface for details.

TAG EXTENSION API2-70

JavaServer Pages 2.0 Specification

Empty and Non-Empty Action

If the TagLibraryDescriptor file indicates that the action must always have an
empty element body, by an <body-content> entry of “empty”, then the doStart-
Tag() method must return SKIP_BODY. Otherwise, the doStartTag() method may
return SKIP_BODY, EVAL_BODY_INCLUDE, or EVAL_BODY_BUFFERED.

Note that which methods are invoked after the doStartTag() depends on both the
return value and on if the custom action element is empty or not in the JSP page,
not how it’s declared in the TLD.

If SKIP_BODY is returned the body is not evaluated, and doEndTag() is invoked.

If EVAL_BODY_INCLUDE is returned, and the custom action element is not
empty, setBodyContent() is not invoked, doInitBody() is not invoked, the body is

Tag Handlers that want Access to their Body Content 2-71

JavaServer Pages 2.0 Specification

evaluated and “passed through” to the current out, doAfterBody() is invoked and
then, after zero or more iterations, doEndTag() is invoked. If the custom action
element is empty, only doStart() and doEndTag() are invoked.

If EVAL_BODY_BUFFERED is returned, and the custom action element is not
empty, setBodyContent() is invoked, doInitBody() is invoked, the body is evalu-
ated, doAfterBody() is invoked, and then, after zero or more iterations, doEnd-
Tag() is invoked. If the custom action element is empty, only doStart() and
doEndTag() are invoked.

JSP.13.2.2.1 Fields

public static final int EVAL_BODY_BUFFERED

Request the creation of new buffer, a BodyContent on which to evaluate the
body of this tag. Returned from doStartTag when it implements BodyTag.
This is an illegal return value for doStartTag when the class does not imple-
ment BodyTag.

public static final int EVAL_BODY_TAG

Deprecated. As of Java JSP API 1.2, use
BodyTag.EVAL_BODY_BUFFERED or
IterationTag.EVAL_BODY_AGAIN.

Deprecated constant that has the same value as EVAL_BODY_BUFFERED
and EVAL_BODY_AGAIN. This name has been marked as deprecated to
encourage the use of the two different terms, which are much more descrip-
tive.

JSP.13.2.2.2 Methods

public void doInitBody()

Prepare for evaluation of the body. This method is invoked by the JSP page
implementation object after setBodyContent and before the first time the
body is to be evaluated. This method will not be invoked for empty tags or for
non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

The JSP container will resynchronize the values of any AT_BEGIN and
NESTED variables (defined by the associated TagExtraInfo or TLD) after the
invocation of doInitBody().

Throws:
JspException - if an error occurred while processing this tag

See Also: public int doAfterBody()

public void setBodyContent(BodyContent b)

TAG EXTENSION API2-72

JavaServer Pages 2.0 Specification

Set the bodyContent property. This method is invoked by the JSP page imple-
mentation object at most once per action invocation. This method will be
invoked before doInitBody. This method will not be invoked for empty tags
or for non-empty tags whose doStartTag() method returns SKIP_BODY or
EVAL_BODY_INCLUDE.

When setBodyContent is invoked, the value of the implicit object out has
already been changed in the pageContext object. The BodyContent object
passed will have not data on it but may have been reused (and cleared) from
some previous invocation.

The BodyContent object is available and with the appropriate content until
after the invocation of the doEndTag method, at which case it may be reused.

Parameters:
b - the BodyContent

See Also: public void doInitBody(), public int doAfterBody()

JSP.13.2.3 BodyTagSupport

Syntax
public class BodyTagSupport extends TagSupport implements BodyTag

All Implemented Interfaces: BodyTag, IterationTag, JspTag, java.io.Seri-
alizable, Tag

Description

A base class for defining tag handlers implementing BodyTag.

The BodyTagSupport class implements the BodyTag interface and adds addi-
tional convenience methods including getter methods for the bodyContent prop-
erty and methods to get at the previous out JspWriter.

Many tag handlers will extend BodyTagSupport and only redefine a few methods.

JSP.13.2.3.1 Fields

protected BodyContent bodyContent

The current BodyContent for this BodyTag.

JSP.13.2.3.2 Constructors

public BodyTagSupport()

Tag Handlers that want Access to their Body Content 2-73

JavaServer Pages 2.0 Specification

Default constructor, all subclasses are required to only define a public con-
structor with the same signature, and to call the superclass constructor. This
constructor is called by the code generated by the JSP translator.

JSP.13.2.3.3 Methods

public int doAfterBody()

After the body evaluation: do not reevaluate and continue with the page. By
default nothing is done with the bodyContent data (if any).

Overrides: public int doAfterBody() in class TagSupport

Returns: SKIP_BODY

Throws:
JspException - if an error occurred while processing this tag

See Also: public void doInitBody(), public int doAfterBody()

public int doEndTag()

Default processing of the end tag returning EVAL_PAGE.

Overrides: public int doEndTag() in class TagSupport

Returns: EVAL_PAGE

Throws:
JspException - if an error occurred while processing this tag

See Also: public int doEndTag()

public void doInitBody()

Prepare for evaluation of the body just before the first body evaluation: no
action.

Throws:
JspException - if an error occurred while processing this tag

See Also: public void setBodyContent(BodyContent b), public int
doAfterBody(), public void doInitBody()

public int doStartTag()

Default processing of the start tag returning EVAL_BODY_BUFFERED.

Overrides: public int doStartTag() in class TagSupport

Returns: EVAL_BODY_BUFFERED

Throws:
JspException - if an error occurred while processing this tag

See Also: public int doStartTag()

TAG EXTENSION API2-74

JavaServer Pages 2.0 Specification

public BodyContent getBodyContent()

Get current bodyContent.

Returns: the body content.

public JspWriter getPreviousOut()

Get surrounding out JspWriter.

Returns: the enclosing JspWriter, from the bodyContent.

public void release()

Release state.

Overrides: public void release() in class TagSupport

See Also: public void release()

public void setBodyContent(BodyContent b)

Prepare for evaluation of the body: stash the bodyContent away.

Parameters:
b - the BodyContent

See Also: public int doAfterBody(), public void doInitBody(), public void
setBodyContent(BodyContent b)

JSP.13.3 Dynamic Attributes

Any tag handler can optionally extend the DynamicAttributes interface to indi-
cate that it supports dynamic attributes. In addition to implementing the Dynamic-

Attributes interface, tag handlers that support dynamic attributes must declare that
they do so in the Tag Library Descriptor.

The TLD is what ultimately determines whether a tag handler accepts
dynamic attributes or not. If a tag handler declares that it supports dynamic
attributes in the TLD but it does not implement the DynamicAttributes interface, the
tag handler must be considered invalid by the container.

If the dynamic-attributes element for a tag being invoked contains the value
“true”, the following requirements apply:

•For each attribute specified in the tag invocation that does not have a corre-
sponding attribute element in the TLD for this tag, a call must be made to set-
DynamicAttribute(), passing in the namespace of the attribute (or null if the
attribute does not have a namespace or prefix), the name of the attribute with-
out the namespace prefix, and the final value of the attribute.
•Dynamic attributes must be considered to accept request-time expression
values.

Dynamic Attributes 2-75

JavaServer Pages 2.0 Specification

•Dynamic attributes must be treated as though they were of type
java.lang.Object
•The JSP container must recognize dynamic attributes that are passed to the
tag handler using the <jsp:attribute> standard action.
•If the setDynamicAttribute() method throws JspException, the doStartTag() or
doTag() method is not invoked for this tag, and the exception must be treated
in the same manner as if it came from a regular attribute setter method.
•For a JSP document in either standard or XML syntax, If a dynamic attribute
has a prefix that doesn’t map to a namespace, a translation error must occur.
In standard syntax, only namespaces defined using taglib directives are rec-
ognized.

In the following example, assume attributes a and b are declared using the
attribute element in the TLD, attributes d1 and d2 are not declared, and the dynamic-
attributes element is set to “true”. The attributes are set using the calls:

•setA(“1”),
•setDynamicAttribute(null, “d1”, “2”),
•setDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d2”, “3”),
•setB(“4”),
•setDynamicAttribute(null, “d3”, “5”), and
•setDynamicAttribute(“http://www.foo.com/jsp/taglib/mytag.tld”, “d4”, “6”).

<jsp:root xmlns:mytag=“http://www.foo.com/jsp/taglib/mytag.tld” version=“2.0”>
<mytag:invokeDynamic a=“1” d1=“2” mytag:d2=“3”>
<jsp:attribute name=“b”>4</jsp:attribute>
<jsp:attribute name=“d3”>5</jsp:attribute>
<jsp:attribute name=“mytag:d4”>6</jsp:attribute>

</mytag:invokeDynamic>
</jsp:root>

JSP.13.3.1 DynamicAttributes

Syntax
public interface DynamicAttributes

Description

For a tag to declare that it accepts dynamic attributes, it must implement this
interface. The entry for the tag in the Tag Library Descriptor must also be config-
ured to indicate dynamic attributes are accepted.

For any attribute that is not declared in the Tag Library Descriptor for this tag,
instead of getting an error at translation time, the setDynamicAttribute() method is
called, with the name and value of the attribute. It is the responsibility of the tag
to remember the names and values of the dynamic attributes.

TAG EXTENSION API2-76

JavaServer Pages 2.0 Specification

Since: 2.0

JSP.13.3.1.1 Methods

public void setDynamicAttribute(java.lang.String uri, java.lang.String localName,
java.lang.Object value)

Called when a tag declared to accept dynamic attributes is passed an attribute
that is not declared in the Tag Library Descriptor.

Parameters:
uri - the namespace of the attribute, or null if in the default namespace.

localName - the name of the attribute being set.

value - the value of the attribute

Throws:
JspException - if the tag handler wishes to signal that it does not accept the
given attribute. The container must not call doStartTag() or doTag() for this
tag.

JSP.13.4 Annotated Tag Handler Management Example

Below is a somewhat complete example of the way one JSP container could
choose to do some tag handler management. There are many other strategies that
could be followed, with different pay offs.

The example is as below. In this example, we are assuming that x:iterate is an
iterative tag, while x:doit and x:foobar are simple tag. We will also assume that
x:iterate and x:foobar implement the TryCatchFinally interface, while x:doit does
not.

<x:iterate src=“foo”>
<x:doit att1=“one” att2=“<%= 1 + 1 %>” />
<x:foobar />
<x:doit att1=“one” att2=“<%= 2 + 2 %>” />

</x:iterate>
<x:doit att1=“one” att2=“<%= 3 + 3 %>” />
The particular code shown below assumes there is some pool of tag handlers

that are managed (details not described, although pool managing is simpler when
there are no optional attributes), and attemps to reuse tag handlers if possible. The
code also “hoists” setting of properties to reduce the cost when appropriate, e.g.
inside an iteration.

Annotated Tag Handler Management Example 2-77

JavaServer Pages 2.0 Specification

boolean b1, b2;
IterationTag i; // for x:iterate
Tag d; // for x:doit
Tag d; // for x:foobar
page: // label to end of page...
// initialize iteration tag
i = get tag from pool or new();
i.setPageContext(pc);
i.setParent(null);
i.setSrc(“foo”);
// x:iterate implements TryCatchFinally
try {

if ((b1 = i.doStartTag()) == EVAL_BODY_INCLUDE) {
// initialize doit tag
// code has been moved out of the loop for show
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(i);
d.setAtt1(“one”);

loop:
while (1) do {

// I'm ignoring newlines...
// two invocations, fused together
// first invocation of x:doit
d.setAtt2(1+1);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error ...
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

// x:foobar invocation
f = get tag from pool or new();
f.setPageContext(pc);
f.setParent(i);
// x:foobar implements TryCatchFinally
try {

if ((b2 = f.doStartTag()) == EVAL_BODY_INCLUDE) {
// nothing

} else if (b2 != SKIP_BODY) {
// Q? protocol error

}
if ((b2 = f.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {

TAG EXTENSION API2-78

JavaServer Pages 2.0 Specification

f.doCatch(t); // caught, may been rethrown!
} finally {

f.doFinally();
}
// put f back to pool

// second invocation of x:doit
d.setAtt2(2+2);
if ((b2 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}
if ((b2 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b2 != EVAL_PAGE) {

// Q? protocol error
}
if ((b2 = i.doAfterBody()) == EVAL_BODY_AGAIN) {

break loop;
} else if (b2 != SKIP_BODY) {

// Q? protocol error
}

// loop
}

} else if (b1 != SKIP_BODY) {
// Q? protocol error

}
// tail end of the IteratorTag ...
if ((b1 = i.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

// third invocation
// this tag handler could be reused from the previous ones.
d = get tag from pool or new();
d.setPageContext(pc);
d.setParent(null);
d.setAtt1(“one”);
d.setAtt2(3+3);
if ((b1 = d.doStartTag()) == EVAL_BODY_INCLUDE) {

// nothing
} else if (b1 != SKIP_BODY) {

// Q? protocol error
}
if ((b1 = d.doEndTag()) == SKIP_PAGE) {

break page; // be done with it.
} else if (b1 != EVAL_PAGE) {

// Q? protocol error
}

} catch (Throwable t) {

Cooperating Actions 2-79

JavaServer Pages 2.0 Specification

i.doCatch(t); // caught, may been rethrown!
} finally {

i.doFinally();
}

JSP.13.5 Cooperating Actions

Actions can cooperate with other actions and with scripting code in a number of
ways.

PageContext
Often two actions in a JSP page will want to cooperate, perhaps by one action

creating some server-side object that needs to be access by another. One mechanism
for doing this is by giving the object a name within the JSP page; the first action will
create the object and associate the name to it while the second action will use the
name to retrieve the object.

For example, in the following JSP segment the foo action might create a
server-side object and give it the name “myObject”. Then the bar action might
access that server-side object and take some action.

<x:foo id=“myObject” />
<x:bar ref=“myObjet” />
In a JSP implementation, the mapping “name”->value is kept by the implicit

object pageContext. This object is passed around through the Tag handler instances
so it can be used to communicate information: all it is needed is to know the name
under which the information is stored into the pageContext.

The Runtime Stack
An alternative to explicit communication of information through a named object

is implicit coordination based on syntactic scoping.
For example, in the following JSP segment the foo action might create a

server-side object; later the nested bar action might access that server-side object.
The object is not named within the pageContext: it is found because the specific
foo element is the closest enclosing instance of a known element type.

<foo>
<bar/>

</foo>
This functionality is supported through the TagSupport.findAncestorWith-

Class(Tag, Class), which uses a reference to parent tag kept by each Tag instance,
which effectively provides a run-time execution stack.

TAG EXTENSION API2-80

JavaServer Pages 2.0 Specification

JSP.13.6 Simple Tag Handlers

This section presents the API to implement Simple Tag Handlers and JSP Frag-
ments. Simple Tag Handlers present a much simpler invocation protocol than do
Classic Tag Handlers.

The Tag Library Descriptor maps tag library declarations to their physical
underlying implementations. A Simple Tag Handler is represented in Java by a
class which implements the SimpleTag interface.

Unlike classic tag handlers, the SimpleTag interface does not extend Tag.
Instead of supporting doStartTag() and doEndTag(), the SimpleTag interface
provides a simple doTag() method, which is called once and only once for any
given tag invocation. All tag logic, iteration, body evaluations, etc. are to be
performed in this single method. Thus, simple tag handlers have the equivalent
power of BodyTag, but with a much simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container
invokes the setJspBody() method with a JspFragment object encapsulating the
body of the tag. The tag handler implementation can call invoke() on that fragment
to evaluate the body. The SimpleTagSupport convenience class provides getJsp-

Body() and other useful methods to make this even easier.

Lifecycle of Simple Tag Handlers
This section describes the lifecycle of simple tag handlers, from creation to

invocation. For all semantics left unspecified by this section, the semantics default to
that of a classic tag handler.

When a simple tag handler is invoked, the following steps occur (in order):
1. Simple tag handlers are created initially using a zero argument constructor on the

corresponding implementation class. Unlike classic tag handlers, this instance
must never be pooled by the container. A new instance must be created for each
tag invocation.

2. The setJspContext() and setParent() methods are invoked on the tag handler. The
setParent() method need not be called if the value being passed in is null. In the
case of tag files, a JspContext wrapper is created so that the tag file can appear to
have its own page scope. Calling getJspContext() must return the wrapped Jsp-
Context.

3. The attributes specified as XML element attributes (if any) are evaluated next, in
the order in which they are declared, according to the following rules (referred to
as “evaluating an XML element attribute” below). The appropriate bean property
setter is invoked for each. If no setter is defined for the specified attribute but the
tag accepts dynamic attributes, the setDynamicAttribute() method is invoked as the
setter.

Simple Tag Handlers 2-81

JavaServer Pages 2.0 Specification

•If the attribute is a scripting expression (e.g. “<%= 1+1 %>” in JSP syntax,
or “%= 1+1 %” in XML syntax), the expression is evaluated, and the result is
converted as per the rules in “Type Conversions”, and passed to the setter.
•Otherwise, if the attribute contains any Expression Language expressions
(e.g. “Hello ${name}”), the expression is evaluated, and the result is con-
verted and passed to the setter.
•Otherwise, the attribute value is taken verbatim, converted, and passed to the
setter.

4. The value for each <jsp:attribute> element is evaluated, and the corresponding
bean property setter methods are invoked for each, in the order in which they
appear in the body of the tag. If no setter is defined for the specified attribute but
the tag accepts dynamic attributes, the setDynamicAttribute() method is invoked as
the setter.

•Otherwise, if the attribute is not of type JspFragment, the container evaluates
the body of the <jsp:attribute> element. This evaluation can be done in a con-
tainer-specific manner. Container implementors should note that in the pro-
cess of evaluating this body, other custom actions may be invoked.
•Otherwise, if the attribute is of type JspFragment, an instance of a Jsp-
Fragment object is created and passed in.

5. The value for the body of the tag is determined, and if a body exists the setJsp-
Body() method is called on the tag handler.

•If the tag is declared to have a body-content of “empty” or no body or an
empty body is passed for this invocation, then setJspBody() is not called.
•Otherwise, the body of the tag is either the body of the <jsp:body> element,
or the body of the custom action invocation if no <jsp:body> or
<jsp:attribute> elements are present. In this case, an instance of a Jsp-
Fragment object is created as per the lifecycle described in the JSP Fragments
section and it is passed to the setter. If the tag is declared to have a body-con-
tent of “tagdependent” the JspFragment must echo the body’s contents verba-
tim. Otherwise, if the tag is declared to have a body-content of type
“scriptless”, the JspFragment must evaluate the body’s contents as a JSP
scriptless body.

6. The doTag() method is invoked.

7. The implementation of doTag() performs its function, potentially calling other tag
handlers (if the tag handler is implemented as a tag file) and invoking fragments.

8. The doTag() method returns, and the tag handler instance is discarded. If Skip-
PageException is thrown, the rest of the page is not evaluated and the request is
completed. If this request was forwarded or included from another page (or Serv-
let), only the current page evaluation stops.

9. For each tag scripting variable declared with scopes AT_BEGIN or AT_END, the
appropriate scripting variables and scoped attributes are declared, as with classic

TAG EXTENSION API2-82

JavaServer Pages 2.0 Specification

tag handlers.

JSP.13.6.1 SimpleTag

Syntax
public interface SimpleTag extends JspTag

All Superinterfaces: JspTag

All Known Implementing Classes: SimpleTagSupport

Description

Interface for defining Simple Tag Handlers.

Simple Tag Handlers differ from Classic Tag Handlers in that instead of support-
ing doStartTag() and doEndTag(), the SimpleTag interface provides a simple
doTag() method, which is called once and only once for any given tag invocation.
All tag logic, iteration, body evaluations, etc. are to be performed in this single
method. Thus, simple tag handlers have the equivalent power of BodyTag, but
with a much simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container
invokes the setJspBody() method with a JspFragment object encapsulating the
body of the tag. The tag handler implementation can call invoke() on that fragment
to evaluate the body as many times as it needs.

A SimpleTag handler must have a public no-args constructor. Most SimpleTag
handlers should extend SimpleTagSupport.

Lifecycle

The following is a non-normative, brief overview of the SimpleTag lifecycle.
Refer to the JSP Specification for details.

1. A new tag handler instance is created each time by the container by calling the
provided zero-args constructor. Unlike classic tag handlers, simple tag handlers
are never cached and reused by the JSP container.

2. The setJspContext() and setParent() methods are called by the container. The set-
Parent() method is only called if the element is nested within another tag invoca-
tion.

3. The setters for each attribute defined for this tag are called by the container.

4. If a body exists, the setJspBody() method is called by the container to set the body
of this tag, as a JspFragment. If the action element is empty in the page, this

Simple Tag Handlers 2-83

JavaServer Pages 2.0 Specification

method is not called at all.

5. The doTag() method is called by the container. All tag logic, iteration, body evalu-
ations, etc. occur in this method.

6. The doTag() method returns and all variables are synchronized.

Since: 2.0

See Also: SimpleTagSupport

JSP.13.6.1.1 Methods

public void doTag()

Called by the container to invoke this tag. The implementation of this method
is provided by the tag library developer, and handles all tag processing, body
iteration, etc.

The JSP container will resynchronize any AT_BEGIN and AT_END vari-
ables (defined by the associated tag file, TagExtraInfo, or TLD) after the
invocation of doTag().

Throws:
JspException - If an error occurred while processing this tag.

SkipPageException - If the page that (either directly or indirectly) invoked
this tag is to cease evaluation. A Simple Tag Handler generated from a tag file
must throw this exception if an invoked Classic Tag Handler returned
SKIP_PAGE or if an invoked Simple Tag Handler threw SkipPageException
or if an invoked Jsp Fragment threw a SkipPageException.

java.io.IOException - If there was an error writing to the output stream.

public JspTag getParent()

Returns the parent of this tag, for collaboration purposes.

Returns: the parent of this tag

public void setJspBody(JspFragment jspBody)

Provides the body of this tag as a JspFragment object, able to be invoked zero
or more times by the tag handler.

This method is invoked by the JSP page implementation object prior to
doTag(). If the action element is empty in the page, this method is not called
at all.

Parameters:
jspBody - The fragment encapsulating the body of this tag.

TAG EXTENSION API2-84

JavaServer Pages 2.0 Specification

public void setJspContext(JspContext pc)

Called by the container to provide this tag handler with the JspContext for
this invocation. An implementation should save this value.

Parameters:
pc - the page context for this invocation

See Also: public void setPageContext(PageContext pc)

public void setParent(JspTag parent)

Sets the parent of this tag, for collaboration purposes.

The container invokes this method only if this tag invocation is nested within
another tag invocation.

Parameters:
parent - the tag that encloses this tag

JSP.13.6.2 SimpleTagSupport

Syntax
public class SimpleTagSupport implements SimpleTag

All Implemented Interfaces: JspTag, SimpleTag

Description

A base class for defining tag handlers implementing SimpleTag.

The SimpleTagSupport class is a utility class intended to be used as the base class
for new simple tag handlers. The SimpleTagSupport class implements the
SimpleTag interface and adds additional convenience methods including getter
methods for the properties in SimpleTag.

Since: 2.0

JSP.13.6.2.1 Constructors

public SimpleTagSupport()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.6.2.2 Methods

public void doTag()

Simple Tag Handlers 2-85

JavaServer Pages 2.0 Specification

Default processing of the tag does nothing.

Throws:
JspException - Subclasses can throw JspException to indicate an error
occurred while processing this tag.

SkipPageException - If the page that (either directly or indirectly) invoked
this tag is to cease evaluation. A Simple Tag Handler generated from a tag file
must throw this exception if an invoked Classic Tag Handler returned
SKIP_PAGE or if an invoked Simple Tag Handler threw SkipPageException
or if an invoked Jsp Fragment threw a SkipPageException.

IOException - Subclasses can throw IOException if there was an error writing
to the output stream

See Also: public void doTag()

public static final JspTag findAncestorWithClass(JspTag from,
java.lang.Class klass)

Find the instance of a given class type that is closest to a given instance. This
method uses the getParent method from the Tag and/or SimpleTag interfaces.
This method is used for coordination among cooperating tags.

For every instance of TagAdapter encountered while traversing the ancestors,
the tag handler returned by TagAdapter.getAdaptee() - instead of the Tag-
Adpater itself - is compared to klass. If the tag handler matches, it - and not
its TagAdapter - is returned.

The current version of the specification only provides one formal way of indi-
cating the observable type of a tag handler: its tag handler implementation
class, described in the tag-class subelement of the tag element. This is
extended in an informal manner by allowing the tag library author to indicate
in the description subelement an observable type. The type should be a sub-
type of the tag handler implementation class or void. This addititional con-
straint can be exploited by a specialized container that knows about that
specific tag library, as in the case of the JSP standard tag library.

When a tag library author provides information on the observable type of a
tag handler, client programmatic code should adhere to that constraint. Spe-
cifically, the Class passed to findAncestorWithClass should be a subtype of
the observable type.

Parameters:
from - The instance from where to start looking.

klass - The subclass of JspTag or interface to be matched

Returns: the nearest ancestor that implements the interface or is an instance
of the class specified

TAG EXTENSION API2-86

JavaServer Pages 2.0 Specification

protected JspFragment getJspBody()

Returns the body passed in by the container via setJspBody.

Returns: the fragment encapsulating the body of this tag, or null if the
action element is empty in the page.

protected JspContext getJspContext()

Returns the page context passed in by the container via setJspContext.

Returns: the page context for this invocation

public JspTag getParent()

Returns the parent of this tag, for collaboration purposes.

Returns: the parent of this tag

public void setJspBody(JspFragment jspBody)

Stores the provided JspFragment.

Parameters:
jspBody - The fragment encapsulating the body of this tag. If the action
element is empty in the page, this method is not called at all.

See Also: public void setJspBody(JspFragment jspBody)

public void setJspContext(JspContext pc)

Stores the provided JSP context in the private jspContext field. Subclasses
can access the JspContext via getJspContext().

Parameters:
pc - the page context for this invocation

See Also: public void setJspContext(JspContext pc)

public void setParent(JspTag parent)

Sets the parent of this tag, for collaboration purposes.

The container invokes this method only if this tag invocation is nested within
another tag invocation.

Parameters:
parent - the tag that encloses this tag

JSP.13.6.3 TagAdapter

Syntax
public class TagAdapter implements Tag

Simple Tag Handlers 2-87

JavaServer Pages 2.0 Specification

All Implemented Interfaces: JspTag, Tag

Description

Wraps any SimpleTag and exposes it using a Tag interface. This is used to allow
collaboration between classic Tag handlers and SimpleTag handlers.

Because SimpleTag does not extend Tag, and because Tag.setParent() only
accepts a Tag instance, a classic tag handler (one that implements Tag) cannot
have a SimpleTag as its parent. To remedy this, a TagAdapter is created to wrap
the SimpleTag parent, and the adapter is passed to setParent() instead. A classic
Tag Handler can call getAdaptee() to retrieve the encapsulated SimpleTag
instance.

Since: 2.0

JSP.13.6.3.1 Constructors

public TagAdapter(SimpleTag adaptee)

Creates a new TagAdapter that wraps the given SimpleTag and returns the
parent tag when getParent() is called.

Parameters:
adaptee - The SimpleTag being adapted as a Tag.

JSP.13.6.3.2 Methods

public int doEndTag()

Must not be called.

Returns: always throws UnsupportedOperationException

Throws:
UnsupportedOperationException - Must not be called

JspException - never thrown

public int doStartTag()

Must not be called.

Returns: always throws UnsupportedOperationException

Throws:
UnsupportedOperationException - Must not be called

JspException - never thrown

public JspTag getAdaptee()

TAG EXTENSION API2-88

JavaServer Pages 2.0 Specification

Gets the tag that is being adapted to the Tag interface. This should be an
instance of SimpleTag in JSP 2.0, but room is left for other kinds of tags in
future spec versions.

Returns: the tag that is being adapted

public Tag getParent()

Returns the parent of this tag, which is always getAdaptee().getParent(). This
will either be the enclosing Tag (if getAdaptee().getParent() implements
Tag), or an adapter to the enclosing Tag (if getAdaptee().getParent() does not
implement Tag).

Returns: The parent of the tag being adapted.

public void release()

Must not be called.

Throws:
UnsupportedOperationException - Must not be called

public void setPageContext(PageContext pc)

Must not be called.

Parameters:
pc - ignored.

Throws:
UnsupportedOperationException - Must not be called

public void setParent(Tag parentTag)

Must not be called. The parent of this tag is always getAdaptee().getParent().

Parameters:
parentTag - ignored.

Throws:
UnsupportedOperationException - Must not be called.

JSP.13.7 JSP Fragments

JSP Fragments are represented in Java by an instance of the
javax.servlet.jsp.tagext.JspFragment abstract class. Pieces of JSP code are translated
into JSP fragments in the context of a tag invocation. JSP Fragments are created
when providing the body of a <jsp:attribute> standard action for an attribute that is
defined as a fragment or of type JspFragment, or when providing the body of a tag
invocation handled by a Simple Tag Handler.

JSP Fragments 2-89

JavaServer Pages 2.0 Specification

Before being passed to a tag handler, the JspFragment instance is associated
with the JspContext of the surrounding page in an implementation-dependent
manner. In addition, it is associated with the parent Tag or SimpleTag instance for
collaboration purposes, so that when a custom action is invoked from within the
fragment, setParent() can be called with the appropriate value. The fragment
implementation must keep these associations for the duration of the tag invocation
in which it is used.

The invoke() method executes the body and directs all output to either the
passed in java.io.Writer or the JspWriter returned by the getOut() method of the Jsp-

Context associated with the fragment.
The implementation of each method can optionally throw a JspException,

which must be handled by the invoker. Note that tag library developers and page
authors should not generate JspFragment implementations manually.

The following sections specify the creation and invocation lifecycles of a JSP
Fragment in detail, from the JSP Container’s perspective.

Creation of a JSP Fragment
When a JSP fragment is created, the following steps occur (in order):

1. An instance of a class implementing the JspFragment abstract class is obtained
(may either be created or can optionally be cached) each time the tag is invoked.
This instance must be configured to produce the contents of the body of the frag-
ment when invoked. If the fragment is defining the body of a <jsp:attribute>, the
fragment must evaluate the body each time it is invoked. Otherwise, if the frag-
ment is defining the body of a simple tag, the behavior of the fragment when
invoked varies depending on the body-content declared for the tag:

•If the body-content is “tagdependent”, then the fragment must echo the con-
tents of the body verbatim when invoked.
•If the body-content is “scriptless”, then the fragment must evaluate the body
each time it is invoked.

2. The JspFragment instance is passed a reference to the current JspContext. When-
ever the fragment invokes a tag handler, it must use this value when calling set-
JspContext().

3. The JspFragment instance is associated with an instance of the tag handler of the
nearest enclosing tag invocation, or with null if there is no enclosing tag. When-
ever the fragment invokes a tag handler, the fragment must use this value when
calling setParent().

TAG EXTENSION API2-90

JavaServer Pages 2.0 Specification

Invocation of a JSP Fragment
After a JSP fragment is created, it is passed to a tag handler for later invocation.

JSP fragments can be invoked either programmatically from a tag handler written in
Java, or from a tag file using the <jsp:invoke> or <jsp:doBody> standard action.

JSP fragments are passed to tag handlers using a bean property of type Jsp-

Fragment. These fragments can be invoked by calling the invoke() method in the
JspFragment abstract class. Note that it is legal (and possible) for a fragment to
recursively invoke itself, indirectly.

The following steps are followed when invoking a JSP fragment:
1. The tag handler invoking the fragment is responsible for setting the values of all

declared AT_BEGIN and NESTED variables in the JspContext of the calling page/
tag, before invoking the fragment. Note that this is not always the same as the
JspContext of the fragment being invoked, as fragments can be passed from one
tag to another. In the case of tag files, for each variable declared in scope
AT_BEGIN or NESTED, if a page scoped attribute exists with the provided name
in the tag file, the JSP container must generate code to create/update the page
scoped attribute of the provided name in the calling page/tag. If a page scoped
attribute with the provided name does not exist in the calling page, and a page
scoped attribute of the provided name is present in the tag file, the scoped
attribute is removed from the tag file’s page scope. See the chapter on Tag Files
for details.

2. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var
attribute is specified, a custom java.io.Writer is created that can expose the result
of the invocation as a java.lang.String object. If the varReader attribute is speci-
fied, a custom java.io.Writer object is created that can expose the resulting invoca-
tion as a java.io.Reader object.

3. The invoke() method of the fragment is invoked, passing in an optional Writer.

4. Before executing the body of the fragment, if a non-null value is provided for the
writer parameter, then the value of JspContext.getOut() and the implicit “out”
object must be updated to send output to that writer. To accomplish this, the con-
tainer must call pushBody(writer) on the current JspContext, where writer is the
instance of java.io.Writer passed to the fragment upon invocation.

5. The body of the fragment is then evaluated by executing the generated code. The
body of the fragment may execute other standard or custom actions. If a classic
Custom Tag Handler is invoked and returns SKIP_PAGE, or if a Simple Tag Han-
dler is invoked and throws SkipPageException, the JspFragment must throw Skip-
PageException to signal that the calling page is to be skipped.

6. Once the fragment has completed its evaluation, even if an exception is thrown,
the value of JspContext.getOut() must be restored via a call to popBody() on the
current JspContext.

JSP Fragments 2-91

JavaServer Pages 2.0 Specification

7. The fragment returns from invoke()

8. If <jsp:invoke> or <jsp:doBody> is being used to invoke a fragment, if the var or
varReader attribute is specified, a scoped variable with a name equal to the value
of the var or varReader attribute is created (or modified) in the page scope, and
the value is set to a java.lang.String or java.io.Reader respectively that can produce
the results of the fragment invocation.

9. The invoke() method can be called again, zero or more times. When the tag invo-
cation defining the fragment is complete, the tag must discard the fragment
instance since it might be reused by the container.

JSP.13.7.1 JspFragment

Syntax
public abstract class JspFragment

Description

Encapsulates a portion of JSP code in an object that can be invoked as many times
as needed. JSP Fragments are defined using JSP syntax as the body of a tag for an
invocation to a SimpleTag handler, or as the body of a <jsp:attribute> standard
action specifying the value of an attribute that is declared as a fragment, or to be
of type JspFragment in the TLD.

The definition of the JSP fragment must only contain template text and JSP action
elements. In other words, it must not contain scriptlets or scriptlet expressions.
At translation time, the container generates an implementation of the Jsp-
Fragment abstract class capable of executing the defined fragment.

A tag handler can invoke the fragment zero or more times, or pass it along to
other tags, before returning. To communicate values to/from a JSP fragment, tag
handlers store/retrieve values in the JspContext associated with the fragment.

Note that tag library developers and page authors should not generate Jsp-
Fragment implementations manually.

Implementation Note: It is not necessary to generate a separate class for each
fragment. One possible implementation is to generate a single helper class for
each page that implements JspFragment. Upon construction, a discriminator can
be passed to select which fragment that instance will execute.

Since: 2.0

TAG EXTENSION API2-92

JavaServer Pages 2.0 Specification

JSP.13.7.1.1 Constructors

public JspFragment()

JSP.13.7.1.2 Methods

public abstract JspContext getJspContext()

Returns the JspContext that is bound to this JspFragment.

Returns: The JspContext used by this fragment at invocation time.

public abstract void invoke(java.io.Writer out)

Executes the fragment and directs all output to the given Writer, or the Jsp-
Writer returned by the getOut() method of the JspContext associated with the
fragment if out is null.

Parameters:
out - The Writer to output the fragment to, or null if output should be sent to
JspContext.getOut().

Throws:
JspException - Thrown if an error occured while invoking this fragment.

SkipPageException - Thrown if the page that (either directly or indirectly)
invoked the tag handler that invoked this fragment is to cease evaluation. The
container must throw this exception if a Classic Tag Handler returned
Tag.SKIP_PAGE or if a Simple Tag Handler threw SkipPageException.

java.io.IOException - If there was an error writing to the stream.

JSP.13.8 Example Simple Tag Handler Scenario

The following non-normative example is intended to help solidify some of the
concepts relating to Tag Files, JSP Fragments and Simple Tag Handlers. In the first
section, two sample input files are presented, a JSP (my.jsp), and a simple tag han-
dler implemented using a tag file (simpletag.tag). One possible output of the transla-
tion process is presented in the second section.

Although short, the example shows all concepts, including the variable
directive. In practice most uses of tags will be much simpler, but probably longer.

The sample generated code is annotated with comments that point to lifecycle
steps presented in various sections. The notation is as follows:

•“Step T.x” = Annotated step x from “Lifecycle of Simple Tag Handlers” ear-
lier in this Chapter.
•“Step C.x” = Annotated step x from “Creation of a JSP Fragment” earlier in
this Chapter.

Example Simple Tag Handler Scenario 2-93

JavaServer Pages 2.0 Specification

•“Step F.x” = Annotated step x from “Invocation of a JSP Fragment” earlier
in this Chapter.

Sample Source Files
This section presents the sample source files in this scenario, from which the

output files are generated.

Original JSP (my.jsp)
<%@ taglib prefix=“my” tagdir=“/WEB-INF/tags” %>
<my:simpleTag x=“10”>

<jsp:attribute name=“y”>20</jsp:attribute>
<jsp:attribute name=“nonfragment”>

Nonfragment Template Text
</jsp:attribute>
<jsp:attribute name=“frag”>

Fragment Template Text ${var1}
</jsp:attribute>
<jsp:body>

Body of tag that defines an AT_BEGIN
scripting variable ${var1}.

</jsp:body>
</my:simpleTag>

Original Tag File (/WEB-INF/tags/simpletag.tag)
<%-- /WEB-INF/tags/simpletag.tag --%>
<%@ attribute name=“x” %>
<%@ attribute name=“y” %>
<%@ attribute name=“nonfragment” %>
<%@ attribute name=“frag” fragment=“true” %>
<%@ variable name-given=“var1” scope=“AT_BEGIN” %>
<%@ taglib prefix=“c” uri=“http://java.sun.com/jsp/jstl/core” %>
Some template text.
<c:set var=“var1” value=“${x+y}”/>
<jsp:invoke fragment=“frag” varReader=“var1”/>
Invoke the body:
<jsp:doBody/>

Sample Generated Files
This section presents sample output files that might be generated by a JSP com-

piler, from the source files presented in the previous section.

TAG EXTENSION API2-94

JavaServer Pages 2.0 Specification

Helper class for JspFragment (JspFragmentBase.java)
public abstract class JspFragmentBase

implements javax.servlet.jsp.tagext.JspFragment
{

protected javax.servlet.jsp.JspContext jspContext;
protected javax.servlet.jsp.tagext.JspTag parentTag;
public void JspFragmentBase(

javax.servlet.jsp.JspContext jspContext,
javax.servlet.jsp.tagext.JspTag parentTag)

{
this.jspContext = jspContext;
this.parentTag = parentTag;

}
}

Relevant Portion of JSP Service Method
// Step T.1 - Initial creation
MySimpleTag _jsp_mySimpleTag = new MySimpleTag();
// Step T.2 - Set page context and parent (since parent is null,
// no need to call setParent() in this case)
_jsp_mySimpleTag.setJspContext(jspContext);
// Step T.3 - XML element attributes evaluated and set
_jsp.mySimpleTag.setX(“10”);
// Step T.4 - <jsp:attribute> elements evaluated and set
// - parameter y
// (using PageContext.pushBody() is one possible implementation -
// one limitation is that this code will only work for Servlet-based code).
out = ((PageContext)jspContext).pushBody();
out.write(“20”);
_jsp_mySimpleTag.setY(

((javax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
// - parameter nonfragment
// (using PageContext.pushBody() is one possible implementation -
// one limitation is that this code will only work for Servlet-based code).
// Note that trim is enabled by default, else we would have “\n Non...”
out = ((PageContext)jspContext).pushBody();
out.write(“Nonfragment Template Text”);
_jsp_mySimpleTag.setNonfragment(

((javax.servlet.jsp.tagext.BodyContent)out).getString());
out = jspContext.popBody();
// - parameter frag
_jsp_mySimpleTag.setFrag(

// Step C.1 - New instance of fragment created
// Step C.2 - Store jspContext
// Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {

public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;

// Step F.1-F.3 done in tag file (see following example)
// Step F.4 - If writer provided, push body:
if(out == null) {

Example Simple Tag Handler Scenario 2-95

JavaServer Pages 2.0 Specification

out = this.jspContext.getOut();
}
else {

out = this.jspContext.pushBody(writer);
}
// Step F.5 - Evaluate body of fragment:

try {
out.write(“Fragment Template Text ”);
out.write(jspContext.getExpressionEvaluator().evaluate(

“${var1}”,
java.lang.String.class,
vResolver, fMapper, “my”));

}
finally {

// Step F.6 - Restore value of JspContext.getOut()
if(writer != null) {

this.jspContext.popBody();
}

}
// Step F.7-F.9 done in tag file (see following example)

}
});

// Step T.5 - Determine and set body of the tag
// - body of tag
_jsp_mySimpleTag.setJspBody(

// Step C.1 - New instance of fragment created
// Step C.2 - Store jspContext
// Step C.3 - Association with nearest enclosing Tag instance
new JspFragmentBase(jspContext, _jsp_mySimpleTag) {

public void invoke(java.io.Writer writer) {
javax.servlet.jsp.JspWriter out;

// Step F.1-F.3 done in tag file (see following example)
// Step F.4 - If writer provided, push body:
if(writer == null) {

out = this.jspContext.getOut();
}
else {

out = this.jspContext.pushBody(writer);
}
// Step F.5 - Evaluate body of fragment:

try {
out.write(

“Body of tag that defines an AT_BEGIN\n” +
“ scripting variable ”);

out.write(jspContext.getExpressionEvaluator().evaluate(
“${var1}”,
java.lang.String.class,
vResolver, fMapper, “my”));

out.write(“.\n”);
}
finally {

// Step F.6 - Restore value of JspContext.getOut()
if(writer != null) {

TAG EXTENSION API2-96

JavaServer Pages 2.0 Specification

this.jspContext.popBody();
}

}
// Step F.7-F.9 done in tag file (see following example)

}
});

// Step T.6 - Inovke doTag
// Step T.7 occurs in the tag file (see following example)
// Step T.8 - doTag returns - page will catch SkipPageException.
_jsp_mySimpleTag.doTag();
// Step T.9 - Declare AT_BEGIN and AT_END scripting variables
String var1 = (String)jspContext.findAttribute(“var1”);

Generated Simple Tag Handler (MySimpleTag.java)
public class MySimpleTag

extends javax.servlet.jsp.tagext.SimpleTagSupport
{

// Attributes:
private String x;
private String y;
private String nonfragment;
private javax.servlet.jsp.tagext.JspFragment frag;
// Setters and getters for attributes:
public void setX(Stirng x) {

this.x = x;
}
public String getX() {

return this.x;
}
public void setY(String y) {

this.y = y;
}
public String getY() {

return this.y;
}
public void setNonfragment(String nonfragment) {

this.nonfragment = nonfragment;
}
public String getNonfragment() {

return this.nonfragment;
}
public void setFrag(javax.servlet.jsp.tagext.JspFragment frag) {

this.frag = frag;
}
public javax.servlet.jsp.tagext.JspFragment getFrag() {

return this.frag;
}
protected JspContext jspContext;
public void setJspContext(JspContext ctx) {

super.setJspContext(ctx);
// Step T.2 - A JspContext wrapper is created.
// (Implementation of wrapper not shown).

Example Simple Tag Handler Scenario 2-97

JavaServer Pages 2.0 Specification

this.jspContext = new utils.JspContextWrapper(ctx);
}
public JspContext getJspContext() {

// Step T.2 - Calling getJspContext() must return the
// wrapped JspContext.
return this.jspContext;

}
public void doTag() throws JspException {

java.lang.Object jspValue;
JspContext jspContext = getJspContext();
JspContext _jsp_parentContext =

SimpleTagSupport.this.getJspContext();
try {

javax.servlet.jsp.JspWriter out = jspContext.getOut();
// Create page-scope attributes for each tag attribute:
this.jspContext.setAttribute(“x”, getX());
this.jspContext.setAttribute(“y”, getY());
this.jspContext.setAttribute(“nonfragment”, getNonfragment());
this.jspContext.setAttribute(“frag”, getFrag());
// Synchronize AT_BEGIN variables from calling page
if((jspValue = _jsp_parentContext.getAttribute(
“var1”)) != null)
{

jspContext.setAttribute(“var1”, value);
}
else {

jspContext.removeAttribute(“var1”,
JspContext.PAGE_SCOPE);
}
// Tag template text:
out.write(“\n\n\n\n\n\n\n\nSome template text.\n”);
// Invoke c:set - recognized tag handler from JSTL:
jspContext.setAttribute(“var1”,

jspContext.getExpressionEvaluator().evaluate(
“${x+y}”,
java.lang.String.class,
jspContext,
prefixMap, functionMap, “my”));
// Invoke the “frag” fragment:
// Step F.1 - Set values of AT_BEGIN and NESTED variables
// in calling page context.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {

_jsp_parentContext.setAttribute(“var1”, value);
}
else {

_jsp_parentContext.removeAttribute(“var1”,
JspContext.PAGE_SCOPE);
}
// Step F.2 - varReader is specified, generate a writer.
java.io.Writer _jsp_sout = new java.io.StringWriter();
// Step F.3 - Invoke fragment with writer
getFrag().invoke(_jsp_sout);
// Step F.4 - F.6 occur in the fragment (see above)

TAG EXTENSION API2-98

JavaServer Pages 2.0 Specification

// Step F.7 - fragment returns
// Step F.8 - varReader specified, so save to var
jspContext.setAttribute(

“var1”, new StringReader(_jsp_sout.toString()));
// Step F.9 - Done!
out.write(“\n\nInvoke the body:\n”);
// Invoke the body of the tag:
// Step F.1 - Set values of AT_BEGIN and NESTED variables
// in calling page context.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {

_jsp_parentContext.setAttribute(“var1”, value);
}
else {

_jsp_parentContext.removeAttribute(“var1”,
JspContext.PAGE_SCOPE);
}
// Step F.2 - varReader is not specified - does not apply.
try {

// Step F.3 - Invoke body, passing optional writer
getJspBody().invoke(null);

}
finally {

// Steps F.4 - F.6 occur in the fragment (see above)
// Step F.7 - fragment returns

}
// Step F.8 does not apply.
// Step F.9 - Done!

}
finally {

// Tag handlers generate code to synchronize AT_BEGIN with
// calling page, regardless of whether an error occurs.
if((jspValue = jspContext.getAttribute(“var1”)) != null) {

_jsp_parentContext.setAttribute(“var1”, value);
}
else {

_jsp_parentContext.removeAttribute(“var1”,
JspContext.PAGE_SCOPE);
}

}
}

}

JSP.13.9 Translation-time Classes

The next classes are used at translation time.

Tag mapping, Tag name
A taglib directive introduces a tag library and associates a prefix to it. The TLD

associated with the library associates Tag handler classes (plus other information)

Translation-time Classes 2-99

JavaServer Pages 2.0 Specification

with tag names. This information is used to associate a Tag class, a prefix, and a
name with each custom action element appearing in a JSP page.

At execution time the implementation of a JSP page will use an available Tag
instance with the appropriate property settings and then follow the protocol
described by the interfaces Tag, IterationTag, BodyTag, SimpleTag, and Try-
CatchFinally. The implementation guarantees that all tag handler instances are
initialized and all are released, but the implementation can assume that previous
settings are preserved by a tag handler, to reduce run-time costs.

Scripting Variables
JSP supports scripting variables that can be declared within a scriptlet and can

be used in another. JSP actions also can be used to define scripting variables so they
can used in scripting elements, or in other actions. This is very useful in some cases;
for example, the jsp:useBean standard action may define an object which can later
be used through a scripting variable.

In some cases the information on scripting variables can be described directly
into the TLD using elements. A special case is typical interpretation of the “id”
attribute. In other cases the logic that decides whether an action instance will
define a scripting variable may be quite complex and the name of a TagExtraInfo

class is instead given in the TLD. The getVariableInfo method of this class is used
at translation time to obtain information on each variable that will be created at
request time when this action is executed. The method is passed a TagData

instance that contains the translation-time attribute values.

Validation
The TLD file contains several pieces of information that is used to do syntactic

validation at translation-time. It also contains two extensible validation mecha-
nisms: a TagLibraryValidator class can be used to validate a complete JSP page, and a
TagExtraInfo class can be used to validate a specific action. In some cases, additional
request-time validation will be done dynamically within the methods in the Tag
instance. If an error is discovered, an instance of JspTagException can be thrown. If
uncaught, this object will invoke the errorpage mechanism of JSP.

The TagLibraryValidator is an addition to the JSP 1.2 specification and is very
open ended, being strictly more powerful than the TagExtraInfo mechanism. A
JSP page is presented via the PageData object, which abstracts the XML view of
the JSP page.

A PageData instance will provides an InputStream (read-only) on the page.
Later specifications may add other views on the page (DOM, SAX, JDOM are all
candidates), for now these views can be generated from the InputStream and

TAG EXTENSION API2-100

JavaServer Pages 2.0 Specification

perhaps can be cached for improved performance (recall the view of the page is
just read-only).

As of JSP 2.0, the JSP container must support a jsp:id attribute to provide
higher quality validation errors. The container will track the JSP pages as passed
to the container, and will assign to each element a unique “id”, which is passed as
the value of the jsp:id attribute. Each XML element in the XML view will be
extended with this attribute. The TagLibraryValidator can use the attribute in one
or more ValidationMessage objects. The container then, in turn, can use these
values to provide more precise information on the location of an error.

The prefix for the id attribute need not be “jsp” but it must map to the
namespace http://java.sun.com/JSP/Page. In the case where the user has redefined
the jsp prefix, an alternative prefix must be used by the container.

Validation Details
In detail, validation is done as follows:
First, the JSP page is parsed using the information in the TLD. At this stage

valid mandatory and optional attributes are checked.
Second, for each unique tag library in the page as determined by the tag

library URI, and in the lexical order in which they appear, their associated
validator class (if any) is invoked. This involves several substeps.

The first substep is to obtain an initialized validator instance by either:
•construct a new instance and invoke setInitParameters() on it, or
•obtain an existing instance that is not being used, invoke release() on it, and
then invoke setInitParameters() on it, or
•locate an existing instance that is not being used on which the desired set-
InitParameters() has already been invoked

The class name is as indicated in the <validator-class> element, and the Map
passed through setInitParameters() is as described in the <init-params> element. All
TagLibraryValidator classes are supposed to keep their initParameters until new
ones are set, or until release() is invoked on them.

The second substep is to perform the actual validation. This is done by
invoking the validate() method with a prefix, uri, and PageData that correspond to
the taglib directive instance being validated and the PageData representing the
page. In the case where a single URI is mapped to more than one prefix, the prefix
of the first URI must be used.

The last substep is to invoke the release() method on the validator tag when it
is no longer needed. This method releases all resources.

Finally, after checking all the tag library validator classes, the TagExtraInfo
classes for all tags will be consulted by invoking their validate method. The order
of invocation of this methods is undefined.

Translation-time Classes 2-101

JavaServer Pages 2.0 Specification

JSP.13.9.1 TagLibraryInfo

Syntax
public abstract class TagLibraryInfo

Description

Translation-time information associated with a taglib directive, and its underlying
TLD file. Most of the information is directly from the TLD, except for the prefix
and the uri values used in the taglib directive

JSP.13.9.1.1 Fields

protected FunctionInfo[] functions

An array describing the functions that are defined in this tag library.

Since: 2.0

protected java.lang.String info

Information (documentation) for this TLD.

protected java.lang.String jspversion

The version of the JSP specification this tag library is written to.

protected java.lang.String prefix

The prefix assigned to this taglib from the taglib directive.

protected java.lang.String shortname

The preferred short name (prefix) as indicated in the TLD.

protected TagFileInfo[] tagFiles

An array describing the tag files that are defined in this tag library.

Since: 2.0

protected TagInfo[] tags

An array describing the tags that are defined in this tag library.

protected java.lang.String tlibversion

The version of the tag library.

protected java.lang.String uri

The value of the uri attribute from the taglib directive for this library.

protected java.lang.String urn

The “reliable” URN indicated in the TLD.

TAG EXTENSION API2-102

JavaServer Pages 2.0 Specification

JSP.13.9.1.2 Constructors

protected TagLibraryInfo(java.lang.String prefix, java.lang.String uri)

Constructor. This will invoke the constructors for TagInfo, and TagAttribute-
Info after parsing the TLD file.

Parameters:
prefix - the prefix actually used by the taglib directive

uri - the URI actually used by the taglib directive

JSP.13.9.1.3 Methods

public FunctionInfo getFunction(java.lang.String name)

Get the FunctionInfo for a given function name, looking through all the func-
tions in this tag library.

Parameters:
name - The name (no prefix) of the function

Returns: the FunctionInfo for the function with the given name, or null if
no such function exists

Since: 2.0

public FunctionInfo[] getFunctions()

An array describing the functions that are defined in this tag library.

Returns: the functions defined in this tag library, or a zero length array if
the tag library defines no functions.

Since: 2.0

public java.lang.String getInfoString()

Information (documentation) for this TLD.

Returns: the info string for this tag lib

public java.lang.String getPrefixString()

The prefix assigned to this taglib from the taglib directive

Returns: the prefix assigned to this taglib from the taglib directive

public java.lang.String getReliableURN()

The “reliable” URN indicated in the TLD (the uri element). This may be used
by authoring tools as a global identifier to use when creating a taglib directive
for this library.

Returns: a reliable URN to a TLD like this

public java.lang.String getRequiredVersion()

Translation-time Classes 2-103

JavaServer Pages 2.0 Specification

A string describing the required version of the JSP container.

Returns: the (minimal) required version of the JSP container.

See Also: JspEngineInfo

public java.lang.String getShortName()

The preferred short name (prefix) as indicated in the TLD. This may be used
by authoring tools as the preferred prefix to use when creating an taglib direc-
tive for this library.

Returns: the preferred short name for the library

public TagInfo getTag(java.lang.String shortname)

Get the TagInfo for a given tag name, looking through all the tags in this tag
library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the TagInfo for the tag with the specified short name, or null if no
such tag is found

public TagFileInfo getTagFile(java.lang.String shortname)

Get the TagFileInfo for a given tag name, looking through all the tag files in
this tag library.

Parameters:
shortname - The short name (no prefix) of the tag

Returns: the TagFileInfo for the specified Tag file, or null if no Tag file is
found

Since: 2.0

public TagFileInfo[] getTagFiles()

An array describing the tag files that are defined in this tag library.

Returns: the TagFileInfo objects corresponding to the tag files defined by
this tag library, or a zero length array if this tag library defines no tags files

Since: 2.0

public TagInfo[] getTags()

An array describing the tags that are defined in this tag library.

Returns: the TagInfo objects corresponding to the tags defined by this tag
library, or a zero length array if this tag library defines no tags

public java.lang.String getURI()

The value of the uri attribute from the taglib directive for this library.

TAG EXTENSION API2-104

JavaServer Pages 2.0 Specification

Returns: the value of the uri attribute

JSP.13.9.2 TagInfo

Syntax
public class TagInfo

Description

Tag information for a tag in a Tag Library; This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.

JSP.13.9.2.1 Fields

public static final java.lang.String BODY_CONTENT_EMPTY

Static constant for getBodyContent() when it is empty.

public static final java.lang.String BODY_CONTENT_JSP

Static constant for getBodyContent() when it is JSP.

public static final java.lang.String BODY_CONTENT_SCRIPTLESS

Static constant for getBodyContent() when it is scriptless.

Since: 2.0

public static final java.lang.String BODY_CONTENT_TAG_DEPENDENT

Static constant for getBodyContent() when it is Tag dependent.

JSP.13.9.2.2 Constructors

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo)

Constructor for TagInfo from data in the JSP 1.1 format for TLD. This class
is to be instantiated only from the TagLibrary code under request from some
JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since
TagLibibraryInfo reflects both TLD information and taglib directive informa-
tion, a TagInfo instance is dependent on a taglib directive. This is probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

Translation-time Classes 2-105

JavaServer Pages 2.0 Specification

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo, java.lang.String displayName,
java.lang.String smallIcon, java.lang.String largeIcon, TagVariableInfo[] tvi)

Constructor for TagInfo from data in the JSP 1.2 format for TLD. This class
is to be instantiated only from the TagLibrary code under request from some
JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since
TagLibibraryInfo reflects both TLD information and taglib directive informa-
tion, a TagInfo instance is dependent on a taglib directive. This is probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

displayName - A short name to be displayed by tools

smallIcon - Path to a small icon to be displayed by tools

largeIcon - Path to a large icon to be displayed by tools

tvi - An array of a TagVariableInfo (or null)

public TagInfo(java.lang.String tagName, java.lang.String tagClassName,
java.lang.String bodycontent, java.lang.String infoString,
TagLibraryInfo taglib, TagExtraInfo tagExtraInfo,
TagAttributeInfo[] attributeInfo, java.lang.String displayName,
java.lang.String smallIcon, java.lang.String largeIcon, TagVariableInfo[] tvi,
boolean dynamicAttributes)

Constructor for TagInfo from data in the JSP 2.0 format for TLD. This class
is to be instantiated only from the TagLibrary code under request from some

TAG EXTENSION API2-106

JavaServer Pages 2.0 Specification

JSP code that is parsing a TLD (Tag Library Descriptor). Note that, since
TagLibibraryInfo reflects both TLD information and taglib directive informa-
tion, a TagInfo instance is dependent on a taglib directive. This is probably a
design error, which may be fixed in the future.

Parameters:
tagName - The name of this tag

tagClassName - The name of the tag handler class

bodycontent - Information on the body content of these tags

infoString - The (optional) string information for this tag

taglib - The instance of the tag library that contains us.

tagExtraInfo - The instance providing extra Tag info. May be null

attributeInfo - An array of AttributeInfo data from descriptor. May be null;

displayName - A short name to be displayed by tools

smallIcon - Path to a small icon to be displayed by tools

largeIcon - Path to a large icon to be displayed by tools

tvi - An array of a TagVariableInfo (or null)

dynamicAttributes - True if supports dynamic attributes

Since: 2.0

JSP.13.9.2.3 Methods

public TagAttributeInfo[] getAttributes()

Attribute information (in the TLD) on this tag. The return is an array describ-
ing the attributes of this tag, as indicated in the TLD.

Returns: The array of TagAttributeInfo for this tag, or a zero-length array if
the tag has no attributes.

public java.lang.String getBodyContent()

The bodycontent information for this tag. If the bodycontent is not defined
for this tag, the default of JSP will be returned.

Returns: the body content string.

public java.lang.String getDisplayName()

Get the displayName.

Returns: A short name to be displayed by tools, or null if not defined

public java.lang.String getInfoString()

Translation-time Classes 2-107

JavaServer Pages 2.0 Specification

The information string for the tag.

Returns: the info string, or null if not defined

public java.lang.String getLargeIcon()

Get the path to the large icon.

Returns: Path to a large icon to be displayed by tools, or null if not defined

public java.lang.String getSmallIcon()

Get the path to the small icon.

Returns: Path to a small icon to be displayed by tools, or null if not defined

public java.lang.String getTagClassName()

Name of the class that provides the handler for this tag.

Returns: The name of the tag handler class.

public TagExtraInfo getTagExtraInfo()

The instance (if any) for extra tag information.

Returns: The TagExtraInfo instance, if any.

public TagLibraryInfo getTagLibrary()

The instance of TabLibraryInfo we belong to.

Returns: the tag library instance we belong to

public java.lang.String getTagName()

The name of the Tag.

Returns: The (short) name of the tag.

public TagVariableInfo[] getTagVariableInfos()

Get TagVariableInfo objects associated with this TagInfo.

Returns: Array of TagVariableInfo objects corresponding to variables
declared by this tag, or a zero length array if no variables have been declared

public VariableInfo[] getVariableInfo(TagData data)

Information on the scripting objects created by this tag at runtime. This is a
convenience method on the associated TagExtraInfo class.

Parameters:
data - TagData describing this action.

Returns: if a TagExtraInfo object is associated with this TagInfo, the result
of getTagExtraInfo().getVariableInfo(data), otherwise null.

public boolean hasDynamicAttributes()

TAG EXTENSION API2-108

JavaServer Pages 2.0 Specification

Get dynamicAttributes associated with this TagInfo.

Returns: True if tag handler supports dynamic attributes

Since: 2.0

public boolean isValid(TagData data)

Translation-time validation of the attributes. This is a convenience method on
the associated TagExtraInfo class.

Parameters:
data - The translation-time TagData instance.

Returns: Whether the data is valid.

public void setTagExtraInfo(TagExtraInfo tei)

Set the instance for extra tag information.

Parameters:
tei - the TagExtraInfo instance

public void setTagLibrary(TagLibraryInfo tl)

Set the TagLibraryInfo property. Note that a TagLibraryInfo element is
dependent not just on the TLD information but also on the specific taglib
instance used. This means that a fair amount of work needs to be done to con-
struct and initialize TagLib objects. If used carefully, this setter can be used to
avoid having to create new TagInfo elements for each taglib directive.

Parameters:
tl - the TagLibraryInfo to assign

public ValidationMessage[] validate(TagData data)

Translation-time validation of the attributes. This is a convenience method on
the associated TagExtraInfo class.

Parameters:
data - The translation-time TagData instance.

Returns: A null object, or zero length array if no errors, an array of
ValidationMessages otherwise.

Since: 2.0

JSP.13.9.3 TagFileInfo

Syntax
public class TagFileInfo

Translation-time Classes 2-109

JavaServer Pages 2.0 Specification

Description

Tag information for a tag file in a Tag Library; This class is instantiated from the
Tag Library Descriptor file (TLD) and is available only at translation time.

Since: 2.0

JSP.13.9.3.1 Constructors

public TagFileInfo(java.lang.String name, java.lang.String path, TagInfo tagInfo)

Constructor for TagFileInfo from data in the JSP 2.0 format for TLD. This
class is to be instantiated only from the TagLibrary code under request from
some JSP code that is parsing a TLD (Tag Library Descriptor). Note that,
since TagLibibraryInfo reflects both TLD information and taglib directive
information, a TagFileInfo instance is dependent on a taglib directive. This is
probably a design error, which may be fixed in the future.

Parameters:
name - The unique action name of this tag

path - Where to find the .tag file implementing this action, relative to the
location of the TLD file.

tagInfo - The detailed information about this tag, as parsed from the directives
in the tag file.

JSP.13.9.3.2 Methods

public java.lang.String getName()

The unique action name of this tag.

Returns: The (short) name of the tag.

public java.lang.String getPath()

Where to find the .tag file implementing this action.

Returns: The path of the tag file, relative to the TLD, or “.” if the tag file
was defined in an implicit tag file.

public TagInfo getTagInfo()

Returns information about this tag, parsed from the directives in the tag file.

Returns: a TagInfo object containing information about this tag

TAG EXTENSION API2-110

JavaServer Pages 2.0 Specification

JSP.13.9.4 TagAttributeInfo

Syntax
public class TagAttributeInfo

Description

Information on the attributes of a Tag, available at translation time. This class is
instantiated from the Tag Library Descriptor file (TLD).

Only the information needed to generate code is included here. Other information
like SCHEMA for validation belongs elsewhere.

JSP.13.9.4.1 Fields

public static final java.lang.String ID

“id” is wired in to be ID. There is no real benefit in having it be something
else IDREFs are not handled any differently.

JSP.13.9.4.2 Constructors

public TagAttributeInfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime)

Constructor for TagAttributeInfo. This class is to be instantiated only from
the TagLibrary code under request from some JSP code that is parsing a TLD
(Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

reqTime - Whether this attribute holds a request-time Attribute.

public TagAttributeInfo(java.lang.String name, boolean required,
java.lang.String type, boolean reqTime, boolean fragment)

JSP 2.0 Constructor for TagAttributeInfo. This class is to be instantiated only
from the TagLibrary code under request from some JSP code that is parsing a
TLD (Tag Library Descriptor).

Parameters:
name - The name of the attribute.

required - If this attribute is required in tag instances.

type - The name of the type of the attribute.

Translation-time Classes 2-111

JavaServer Pages 2.0 Specification

reqTime - Whether this attribute holds a request-time Attribute.

fragment - Whether this attribute is of type JspFragment

Since: 2.0

JSP.13.9.4.3 Methods

public boolean canBeRequestTime()

Whether this attribute can hold a request-time value.

Returns: if the attribute can hold a request-time value.

public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)

Convenience static method that goes through an array of TagAttributeInfo
objects and looks for “id”.

Parameters:
a - An array of TagAttributeInfo

Returns: The TagAttributeInfo reference with name “id”

public java.lang.String getName()

The name of this attribute.

Returns: the name of the attribute

public java.lang.String getTypeName()

The type (as a String) of this attribute.

Returns: the type of the attribute

public boolean isFragment()

Whether this attribute is of type JspFragment.

Returns: if the attribute is of type JspFragment

Since: 2.0

public boolean isRequired()

Whether this attribute is required.

Returns: if the attribute is required.

public java.lang.String toString()

Returns a String representation of this TagAttributeInfo, suitable for debug-
ging purposes.

Overrides: java.lang.Object.toString() in class java.lang.Object

Returns: a String representation of this TagAttributeInfo

TAG EXTENSION API2-112

JavaServer Pages 2.0 Specification

JSP.13.9.5 PageData

Syntax
public abstract class PageData

Description

Translation-time information on a JSP page. The information corresponds to the
XML view of the JSP page.

Objects of this type are generated by the JSP translator, e.g. when being pased to
a TagLibraryValidator instance.

JSP.13.9.5.1 Constructors

public PageData()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.9.5.2 Methods

public abstract java.io.InputStream getInputStream()

Returns an input stream on the XML view of a JSP page. The stream is
encoded in UTF-8. Recall tht the XML view of a JSP page has the include
directives expanded.

Returns: An input stream on the document.

JSP.13.9.6 TagLibraryValidator

Syntax
public abstract class TagLibraryValidator

Description

Translation-time validator class for a JSP page. A validator operates on the XML
view associated with the JSP page.

The TLD file associates a TagLibraryValidator class and some init arguments
with a tag library.

The JSP container is reponsible for locating an appropriate instance of the appro-
priate subclass by

•new a fresh instance, or reuse an available one
•invoke the setInitParams(Map) method on the instance

Translation-time Classes 2-113

JavaServer Pages 2.0 Specification

once initialized, the validate(String, String, PageData) method will be invoked,
where the first two arguments are the prefix and uri for this tag library in the XML
View. The prefix is intended to make it easier to produce an error message. How-
ever, it is not always accurate. In the case where a single URI is mapped to more
than one prefix in the XML view, the prefix of the first URI is provided. There-
fore, to provide high quality error messages in cases where the tag elements them-
selves are checked, the prefix parameter should be ignored and the actual prefix of
the element should be used instead. TagLibraryValidators should always use the
uri to identify elements as beloning to the tag library, not the prefix.

A TagLibraryValidator instance may create auxiliary objects internally to perform
the validation (e.g. an XSchema validator) and may reuse it for all the pages in a
given translation run.

The JSP container is not guaranteed to serialize invocations of validate() method,
and TagLibraryValidators should perform any synchronization they may require.

As of JSP 2.0, a JSP container must provide a jsp:id attribute to provide higher
quality validation errors. The container will track the JSP pages as passed to the
container, and will assign to each element a unique “id”, which is passed as the
value of the jsp:id attribute. Each XML element in the XML view available will
be extended with this attribute. The TagLibraryValidator can then use the attribute
in one or more ValidationMessage objects. The container then, in turn, can use
these values to provide more precise information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map
to the namespace http://java.sun.com/JSP/Page. A TagLibraryValidator imple-
mentation must rely on the uri, not the prefix, of the id attribute.

JSP.13.9.6.1 Constructors

public TagLibraryValidator()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.9.6.2 Methods

public java.util.Map getInitParameters()

Get the init parameters data as an immutable Map. Parameter names are keys,
and parameter values are the values.

Returns: The init parameters as an immutable map.

public void release()

Release any data kept by this instance for validation purposes.

public void setInitParameters(java.util.Map map)

TAG EXTENSION API2-114

JavaServer Pages 2.0 Specification

Set the init data in the TLD for this validator. Parameter names are keys, and
parameter values are the values.

Parameters:
map - A Map describing the init parameters

public ValidationMessage[] validate(java.lang.String prefix, java.lang.String uri,
PageData page)

Validate a JSP page. This will get invoked once per unique tag library URI in
the XML view. This method will return null if the page is valid; otherwise the
method should return an array of ValidationMessage objects. An array of
length zero is also interpreted as no errors.

Parameters:
prefix - the first prefix with which the tag library is associated, in the XML
view. Note that some tags may use a different prefix if the namespace is
redefined.

uri - the tag library’s unique identifier

page - the JspData page object

Returns: A null object, or zero length array if no errors, an array of
ValidationMessages otherwise.

JSP.13.9.7 ValidationMessage

Syntax
public class ValidationMessage

Description

A validation message from either TagLibraryValidator or TagExtraInfo.

As of JSP 2.0, a JSP container must support a jsp:id attribute to provide higher
quality validation errors. The container will track the JSP pages as passed to the
container, and will assign to each element a unique “id”, which is passed as the
value of the jsp:id attribute. Each XML element in the XML view available will
be extended with this attribute. The TagLibraryValidator can then use the attribute
in one or more ValidationMessage objects. The container then, in turn, can use
these values to provide more precise information on the location of an error.

The actual prefix of the id attribute may or may not be jsp but it will always map
to the namespace http://java.sun.com/JSP/Page. A TagLibraryValidator imple-
mentation must rely on the uri, not the prefix, of the id attribute.

Translation-time Classes 2-115

JavaServer Pages 2.0 Specification

JSP.13.9.7.1 Constructors

public ValidationMessage(java.lang.String id, java.lang.String message)

Create a ValidationMessage. The message String should be non-null. The
value of id may be null, if the message is not specific to any XML element, or
if no jsp:id attributes were passed on. If non-null, the value of id must be the
value of a jsp:id attribute for the PageData passed into the validate() method.

Parameters:
id - Either null, or the value of a jsp:id attribute.

message - A localized validation message.

JSP.13.9.7.2 Methods

public java.lang.String getId()

Get the jsp:id. Null means that there is no information available.

Returns: The jsp:id information.

public java.lang.String getMessage()

Get the localized validation message.

Returns: A validation message

JSP.13.9.8 TagExtraInfo

Syntax
public abstract class TagExtraInfo

Description

Optional class provided by the tag library author to describe additional transla-
tion-time information not described in the TLD. The TagExtraInfo class is men-
tioned in the Tag Library Descriptor file (TLD).

This class can be used:
•to indicate that the tag defines scripting variables
•to perform translation-time validation of the tag attributes.

It is the responsibility of the JSP translator that the initial value to be returned by
calls to getTagInfo() corresponds to a TagInfo object for the tag being translated.
If an explicit call to setTagInfo() is done, then the object passed will be returned
in subsequent calls to getTagInfo().

TAG EXTENSION API2-116

JavaServer Pages 2.0 Specification

The only way to affect the value returned by getTagInfo() is through a setTag-
Info() call, and thus, TagExtraInfo.setTagInfo() is to be called by the JSP transla-
tor, with a TagInfo object that corresponds to the tag being translated. The call
should happen before any invocation on validate() and before any invocation on
getVariableInfo().

NOTE: It is a (translation time) error for a tag definition in a TLD with one or
more variable subelements to have an associated TagExtraInfo implementation
that returns a VariableInfo array with one or more elements from a call to
getVariableInfo().

JSP.13.9.8.1 Constructors

public TagExtraInfo()

Sole constructor. (For invocation by subclass constructors, typically implicit.)

JSP.13.9.8.2 Methods

public final TagInfo getTagInfo()

Get the TagInfo for this class.

Returns: the taginfo instance this instance is extending

public VariableInfo[] getVariableInfo(TagData data)

information on scripting variables defined by the tag associated with this Tag-
ExtraInfo instance. Request-time attributes are indicated as such in the Tag-
Data parameter.

Parameters:
data - The TagData instance.

Returns: An array of VariableInfo data, or null or a zero length array if no
scripting variables are to be defined.

public boolean isValid(TagData data)

Translation-time validation of the attributes. Request-time attributes are indi-
cated as such in the TagData parameter. Note that the preferred way to do val-
idation is with the validate() method, since it can return more detailed
information.

Parameters:
data - The TagData instance.

Returns: Whether this tag instance is valid.

See Also: public ValidationMessage[] validate(TagData data)

public final void setTagInfo(TagInfo tagInfo)

Translation-time Classes 2-117

JavaServer Pages 2.0 Specification

Set the TagInfo for this class.

Parameters:
tagInfo - The TagInfo this instance is extending

public ValidationMessage[] validate(TagData data)

Translation-time validation of the attributes. Request-time attributes are indi-
cated as such in the TagData parameter. Because of the higher quality valida-
tion messages possible, this is the preferred way to do validation (although
isValid() still works).

JSP 2.0 and higher containers call validate() instead of isValid(). The default
implementation of this method is to call isValid(). If isValid() returns false, a
generic ValidationMessage[] is returned indicating isValid() returned false.

Parameters:
data - The TagData instance.

Returns: A null object, or zero length array if no errors, an array of
ValidationMessages otherwise.

Since: 2.0

JSP.13.9.9 TagData

Syntax
public class TagData implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable

Description

The (translation-time only) attribute/value information for a tag instance.

TagData is only used as an argument to the isValid, validate, and getVariableInfo
methods of TagExtraInfo, which are invoked at translation time.

JSP.13.9.9.1 Fields

public static final java.lang.Object REQUEST_TIME_VALUE

Distinguished value for an attribute to indicate its value is a request-time
expression (which is not yet available because TagData instances are used at
translation-time).

TAG EXTENSION API2-118

JavaServer Pages 2.0 Specification

JSP.13.9.9.2 Constructors

public TagData(java.util.Hashtable attrs)

Constructor for a TagData. If you already have the attributes in a hashtable,
use this constructor.

Parameters:
attrs - A hashtable to get the values from.

public TagData(java.lang.Object[][] atts)

Constructor for TagData.

A typical constructor may be

static final Object[][] att = {{“connection”, “conn0”},
{“id”, “query0”}};
static final TagData td = new TagData(att);

All values must be Strings except for those holding the distinguished object
REQUEST_TIME_VALUE.

Parameters:
atts - the static attribute and values. May be null.

JSP.13.9.9.3 Methods

public java.lang.Object getAttribute(java.lang.String attName)

The value of the attribute. If a static value is specified for an attribute that
accepts a request-time attribute expression then that static value is returned,
even if the value is provided in the body of a action. The distinguished object
REQUEST_TIME_VALUE is only returned if the value is specified as a
request-time attribute expression or via the <jsp:attribute> action with a body
that contains dynamic content (scriptlets, scripting expressions, EL expres-
sions, standard actions, or custom actions). Returns null if the attribute is not
set.

Parameters:
attName - the name of the attribute

Returns: the attribute’s value

public java.util.Enumeration getAttributes()

Enumerates the attributes.

Returns: An enumeration of the attributes in a TagData

public java.lang.String getAttributeString(java.lang.String attName)

Get the value for a given attribute.

Parameters:

Translation-time Classes 2-119

JavaServer Pages 2.0 Specification

attName - the name of the attribute

Returns: the attribute value string

Throws:
ClassCastException - if attribute value is not a String

public java.lang.String getId()

The value of the tag’s id attribute.

Returns: the value of the tag’s id attribute, or null if no such attribute was
specified.

public void setAttribute(java.lang.String attName, java.lang.Object value)

Set the value of an attribute.

Parameters:
attName - the name of the attribute

value - the value.

JSP.13.9.10 VariableInfo

Syntax
public class VariableInfo

Description

Information on the scripting variables that are created/modified by a tag (at run-
time). This information is provided by TagExtraInfo classes and it is used by the
translation phase of JSP.

Scripting variables generated by a custom action have an associated scope of
either AT_BEGIN, NESTED, or AT_END.

The class name (VariableInfo.getClassName) in the returned objects is used to
determine the types of the scripting variables. Note that because scripting vari-
ables are assigned their values from scoped attributes which cannot be of primi-
tive types, “boxed” types such as java.lang.Integer must be used instead of
primitives.

The class name may be a Fully Qualified Class Name, or a short class name.

If a Fully Qualified Class Name is provided, it should refer to a class that should
be in the CLASSPATH for the Web Application (see Servlet 2.4 specification -
essentially it is WEB-INF/lib and WEB-INF/classes). Failure to be so will lead to
a translation-time error.

TAG EXTENSION API2-120

JavaServer Pages 2.0 Specification

If a short class name is given in the VariableInfo objects, then the class name must
be that of a public class in the context of the import directives of the page where
the custom action appears. The class must also be in the CLASSPATH for the
Web Application (see Servlet 2.4 specification - essentially it is WEB-INF/lib and
WEB-INF/classes). Failure to be so will lead to a translation-time error.

Usage Comments

Frequently a fully qualified class name will refer to a class that is known to the tag
library and thus, delivered in the same JAR file as the tag handlers. In most other
remaining cases it will refer to a class that is in the platform on which the JSP
processor is built (like J2EE). Using fully qualified class names in this manner
makes the usage relatively resistant to configuration errors.

A short name is usually generated by the tag library based on some attributes
passed through from the custom action user (the author), and it is thus less robust:
for instance a missing import directive in the referring JSP page will lead to an
invalid short name class and a translation error.

Synchronization Protocol

The result of the invocation on getVariableInfo is an array of VariableInfo objects.
Each such object describes a scripting variable by providing its name, its type,
whether the variable is new or not, and what its scope is. Scope is best described
through a picture:

The JSP 2.0 specification defines the interpretation of 3 values:
•NESTED, if the scripting variable is available between the start tag and the
end tag of the action that defines it.
•AT_BEGIN, if the scripting variable is available from the start tag of the
action that defines it until the end of the scope.
•AT_END, if the scripting variable is available after the end tag of the action
that defines it until the end of the scope.

Translation-time Classes 2-121

JavaServer Pages 2.0 Specification

The scope value for a variable implies what methods may affect its value and thus
where synchronization is needed as illustrated by the table below. Note: the syn-
chronization of the variable(s) will occur after the respective method has been
called.

1 Called after doStartTag() if EVAL_BODY_INCLUDE is returned, or after doInit-
Body() otherwise.

Variable Information in the TLD

Scripting variable information can also be encoded directly for most cases into
the Tag Library Descriptor using the <variable> subelement of the <tag> element.
See the JSP specification.

JSP.13.9.10.1 Fields

public static final int AT_BEGIN

Scope information that scripting variable is visible after start tag.

public static final int AT_END

Scope information that scripting variable is visible after end tag.

public static final int NESTED

Scope information that scripting variable is visible only within the start/end
tags.

Variable Synchronization Points

doStart-
Tag()

doInit-
Body()

doAfter-
Body()

doEndTag() doTag()

Tag AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

Iterat
ion-
Tag

AT_BEGIN,
NESTED

AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

Body-
Tag

AT_BEGIN,

NESTED1

AT_BEGIN,

NESTED1

AT_BEGIN,
NESTED

AT_BEGIN,
AT_END

Simpl
eTag

AT_BEGIN,
AT_END

TAG EXTENSION API2-122

JavaServer Pages 2.0 Specification

JSP.13.9.10.2 Constructors

public VariableInfo(java.lang.String varName, java.lang.String className,
boolean declare, int scope)

Constructor These objects can be created (at translation time) by the Tag-
ExtraInfo instances.

Parameters:
varName - The name of the scripting variable

className - The type of this variable

declare - If true, it is a new variable (in some languages this will require a
declaration)

scope - Indication on the lexical scope of the variable

JSP.13.9.10.3 Methods

public java.lang.String getClassName()

Returns the type of this variable.

Returns: the type of this variable

public boolean getDeclare()

Returns whether this is a new variable. If so, in some languages this will
require a declaration.

Returns: whether this is a new variable.

public int getScope()

Returns the lexical scope of the variable.

Returns: the lexical scope of the variable, either AT_BEGIN, AT_END, or
NESTED.

See Also: public static final int AT_BEGIN, public static final int AT_END,
public static final int NESTED

public java.lang.String getVarName()

Returns the name of the scripting variable.

Returns: the name of the scripting variable

JSP.13.9.11 TagVariableInfo

Syntax
public class TagVariableInfo

Translation-time Classes 2-123

JavaServer Pages 2.0 Specification

Description

Variable information for a tag in a Tag Library; This class is instantiated from the
Tag Library Descriptor file (TLD) and is available only at translation time. This
object should be immutable. This information is only available in JSP 1.2 format
TLDs or above.

JSP.13.9.11.1 Constructors

public TagVariableInfo(java.lang.String nameGiven,
java.lang.String nameFromAttribute, java.lang.String className,
boolean declare, int scope)

Constructor for TagVariableInfo.

Parameters:
nameGiven - value of <name-given>

nameFromAttribute - value of <name-from-attribute>

className - value of <variable-class>

declare - value of <declare>

scope - value of <scope>

JSP.13.9.11.2 Methods

public java.lang.String getClassName()

The body of the <variable-class> element.

Returns: The name of the class of the variable or ’java.lang.String’ if not
defined in the TLD.

public boolean getDeclare()

The body of the <declare> element.

Returns: Whether the variable is to be declared or not. If not defined in the
TLD, ’true’ will be returned.

public java.lang.String getNameFromAttribute()

The body of the <name-from-attribute> element. This is the name of an
attribute whose (translation-time) value will give the name of the variable.
One of <name-given> or <name-from-attribute> is required.

Returns: The attribute whose value defines the variable name

public java.lang.String getNameGiven()

The body of the <name-given> element.

Returns: The variable name as a constant

TAG EXTENSION API2-124

JavaServer Pages 2.0 Specification

public int getScope()

The body of the <scope> element.

Returns: The scope to give the variable. NESTED scope will be returned if
not defined in the TLD.

JSP.13.9.12 FunctionInfo

Syntax
public class FunctionInfo

Description

Information for a function in a Tag Library. This class is instantiated from the Tag
Library Descriptor file (TLD) and is available only at translation time.

Since: 2.0

JSP.13.9.12.1 Constructors

public FunctionInfo(java.lang.String name, java.lang.String klass,
java.lang.String signature)

Constructor for FunctionInfo.

Parameters:
name - The name of the function

klass - The class of the function

signature - The signature of the function

JSP.13.9.12.2 Methods

public java.lang.String getFunctionClass()

The class of the function.

Returns: The class of the function

public java.lang.String getFunctionSignature()

The signature of the function.

Returns: The signature of the function

public java.lang.String getName()

The name of the function.

Translation-time Classes 2-125

JavaServer Pages 2.0 Specification

Returns: The name of the function

TAG EXTENSION API2-126

JavaServer Pages 2.0 Specification

2-127

C H A P T E R JSP.14
Expression Language API

This chapter describes the javax.servlet.jsp.el package. The chapter includes
content that is generated automatically from javadoc embedded into the actual Java
classes and interfaces. This allows the creation of a single, authoritative, specifica-
tion document.

The javax.servlet.jsp.el package contains a number of classes and interfaces
that describe and define programmatic access to the Expression Language
evaluator. This API can also be used by an implementation of JSP to evaluate the
expressions, but other implementations, like open-coding into Java bytecodes, are
allowed. This package is intended to have no dependencies on other portions of
the JSP 2.0 specification.

JSP.14.1 Expression Evaluator

Programmatic access to the EL Expression Evaluator is provided through the
following types:

•ExpressionEvaluator
•Expression
•FunctionMapper
•VariableResolver

An ExpressionEvaluator object can be obtained from a JspContext object
through the getExpressionEvaluator method. An ExpressionEvaluator encapsulates
the EL processor. An EL expression provided as a String can then be evaluated
directly, or it can be parsed first into an Expression object. The parse step, can be
used to factor out the cost of parsing the expression, or even the cost of optimizing
the implementation.

The parsing of an expression string is done against a target type, a default
prefix (that applies when a function has no prefix), and a FunctionMapper. The

EXPRESSION LANGUAGE API2-128

JavaServer Pages 2.0 Specification

FunctionMapper object maps a prefix and a local name part into a
java.lang.reflect.Method object.

The interpretation or evaluation of a parsed expression is done using a
VariableResolver object. This object resolves top level object names into Objects.
A VariableResolver can be obtained from a JspContext object through the get-

VariableResolver method.

JSP.14.1.1 ExpressionEvaluator

Syntax
public abstract class ExpressionEvaluator

Description

The abstract base class for an expression-language evaluator. Classes that imple-
ment an expression language expose their functionality via this abstract class.

An instance of the ExpressionEvaluator can be obtained via the JspContext /
PageContext

The parseExpression() and evaluate() methods must be thread-safe. That is, mul-
tiple threads may call these methods on the same ExpressionEvaluator object
simultaneously. Implementations should synchronize access if they depend on
transient state. Implementations should not, however, assume that only one
object of each ExpressionEvaluator type will be instantiated; global caching
should therefore be static.

Only a single EL expression, starting with ’${’ and ending with ’}’, can be parsed
or evaluated at a time. EL expressions cannot be mixed with static text. For exam-
ple, attempting to parse or evaluate “abc${1+1}def${1+1}ghi” or even
“${1+1}${1+1}” will cause an ELException to be thrown.

The following are examples of syntactically legal EL expressions:
•${person.lastName}
•${8 * 8}
•${my:reverse('hello')}

Since: 2.0

JSP.14.1.1.1 Constructors

public ExpressionEvaluator()

Expression Evaluator 2-129

JavaServer Pages 2.0 Specification

JSP.14.1.1.2 Methods

public abstract java.lang.Object evaluate(java.lang.String expression,
java.lang.Class expectedType, VariableResolver vResolver,
FunctionMapper fMapper)

Evaluates an expression. This method may perform some syntactic validation
and, if so, it should raise an ELParseException error if it encounters syntactic
errors. EL evaluation errors should cause an ELException to be raised.

Parameters:
expression - The expression to be evaluated.

expectedType - The expected type of the result of the evaluation

vResolver - A VariableResolver instance that can be used at runtime to
resolve the name of implicit objects into Objects.

fMapper - A FunctionMapper to resolve functions found in the expression. It
can be null, in which case no functions are supported for this invocation.

Returns: The result of the expression evaluation.

Throws:
ELException - Thrown if the expression evaluation failed.

public abstract Expression parseExpression(java.lang.String expression,
java.lang.Class expectedType, FunctionMapper fMapper)

Prepare an expression for later evaluation. This method should perform syn-
tactic validation of the expression; if in doing so it detects errors, it should
raise an ELParseException.

Parameters:
expression - The expression to be evaluated.

expectedType - The expected type of the result of the evaluation

fMapper - A FunctionMapper to resolve functions found in the expression. It
can be null, in which case no functions are supported for this invocation. The
ExpressionEvaluator must not hold on to the FunctionMapper reference after
returning from parseExpression(). The Expression object returned must
invoke the same functions regardless of whether the mappings in the
provided FunctionMapper instance change between calling
ExpressionEvaluator.parseExpression() and Expression.evaluate().

Returns: The Expression object encapsulating the arguments.

Throws:
ELException - Thrown if parsing errors were found.

EXPRESSION LANGUAGE API2-130

JavaServer Pages 2.0 Specification

JSP.14.1.2 Expression

Syntax
public abstract class Expression

Description

The abstract class for a prepared expression.

An instance of an Expression can be obtained via from an ExpressionEvaluator
instance.

An Expression may or not have done a syntactic parse of the expression. A client
invoking the evaluate() method should be ready for the case where ELParse-
Exception exceptions are raised.

Since: 2.0

JSP.14.1.2.1 Constructors

public Expression()

JSP.14.1.2.2 Methods

public abstract java.lang.Object evaluate(VariableResolver vResolver)

Evaluates an expression that was previously prepared. In some implementa-
tions preparing an expression involves full syntactic validation, but others
may not do so. Evaluating the expression may raise an ELParseException as
well as other ELExceptions due to run-time evaluation.

Parameters:
vResolver - A VariableResolver instance that can be used at runtime to
resolve the name of implicit objects into Objects.

Returns: The result of the expression evaluation.

Throws:
ELException - Thrown if the expression evaluation failed.

JSP.14.1.3 VariableResolver

Syntax
public interface VariableResolver

Expression Evaluator 2-131

JavaServer Pages 2.0 Specification

Description

This class is used to customize the way an ExpressionEvaluator resolves variable
references at evaluation time. For example, instances of this class can implement
their own variable lookup mechanisms, or introduce the notion of “implicit vari-
ables” which override any other variables. An instance of this class should be
passed when evaluating an expression.

An instance of this class includes the context against which resolution will hap-
pen

Since: 2.0

JSP.14.1.3.1 Methods

public java.lang.Object resolveVariable(java.lang.String pName)

Resolves the specified variable. Returns null if the variable is not found.

Parameters:
pName - the name of the variable to resolve

Returns: the result of the variable resolution

Throws:
ELException - if a failure occurred while trying to resolve the given variable

JSP.14.1.4 FunctionMapper

Syntax
public interface FunctionMapper

Description

The interface to a map between EL function names and methods.

Classes implementing this interface may, for instance, consult tag library infor-
mation to resolve the map.

Since: 2.0

JSP.14.1.4.1 Methods

public java.lang.reflect.Method resolveFunction(java.lang.String prefix,
java.lang.String localName)

EXPRESSION LANGUAGE API2-132

JavaServer Pages 2.0 Specification

Resolves the specified local name and prefix into a Java.lang.Method.
Returns null if the prefix and local name are not found.

Parameters:
prefix - the prefix of the function, or “” if no prefix.

localName - the short name of the function

Returns: the result of the method mapping. Null means no entry found.

JSP.14.2 Exceptions

The ELException exception is used by the expression language to denote any
exception that may arise during the parsing or evaluation of an expression. The
ELParseException exception is a subclass of ELException that corresponds to parsing
errors

Parsing errors are conveyed as exceptions to simplify the API. It is expected
that many JSP containers will use additional mechanisms to parse EL expressions
and report their errors - a run-time API cannot provide accurate line-error
numbers without additional machinery.

JSP.14.2.1 ELException

Syntax
public class ELException extends java.lang.Exception

Direct Known Subclasses: ELParseException

All Implemented Interfaces: java.io.Serializable

Description

Represents any of the exception conditions that arise during the operation evalua-
tion of the evaluator.

Since: 2.0

JSP.14.2.1.1 Constructors

public ELException()

Creates an ELException with no detail message.

Exceptions 2-133

JavaServer Pages 2.0 Specification

public ELException(java.lang.String pMessage)

Creates an ELException with the provided detail message.

Parameters:
pMessage - the detail message

public ELException(java.lang.String pMessage,
java.lang.Throwable pRootCause)

Creates an ELException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception

public ELException(java.lang.Throwable pRootCause)

Creates an ELException with the given root cause.

Parameters:
pRootCause - the originating cause of this exception

JSP.14.2.1.2 Methods

public java.lang.Throwable getRootCause()

Returns the root cause.

Returns: the root cause of this exception

JSP.14.2.2 ELParseException

Syntax
public class ELParseException extends ELException

All Implemented Interfaces: java.io.Serializable

Description

Represents a parsing error encountered while parsing an EL expression.

Since: 2.0

JSP.14.2.2.1 Constructors

public ELParseException()

Creates an ELParseException with no detail message.

EXPRESSION LANGUAGE API2-134

JavaServer Pages 2.0 Specification

public ELParseException(java.lang.String pMessage)

Creates an ELParseException with the provided detail message.

Parameters:
pMessage - the detail message

JSP.14.3 Code Fragment

Below is a non-normative code fragment outlining how the APIs can be used.
// Get an instance of an ExpressionEvaluator
ExpressionEvaluator ee = myJspContext.getExpressionEvaluator();
VariableResolver vr = myJspContext.getVariableResolver();
FunctionMapper fm; // we don't have a portable implementation yet
// Example of compiling an expression. See [ISSUE-2]
// Errors detected this way may have higher quality than those
// found with a simple validate() invocation.
ExpressionCompilation ce;
try {
ce = ee.prepareExpression(expr,
targetClass,
fm,
null // no prefixes
);

} catch (ELParseException e) {
log (e.getMessage());
}
try {
ce.evaluate(vr);

} catch (ElException e) {
log (e);
}

3-1JavaServer Pages 2.0 Specification

Part III

The next Appendices provide details.
Appendices B, C and D are normative. Appendices A, E, and F are non-

normative.
The Appendices are

• Appendix A - Packaging JSP pages

• Appendix B - Schema for the portion of web.xml owned by the JSP specifica-
tion

• Appendix C - Schema for the Tag Library Descriptor file.

• Appendix D - Page Character Encoding Detection Algorithm

• Appendix E - Changes

• Appendix F - Glossary of terms

3-2

JavaServer Pages 2.0 Specification

3-3JavaServer Pages 2.0 Specification

A P P E N D I X JSP.A
Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a
WAR for delivery into a Web container. In the first example, the JSP page is deliv-
ered in source form. This is likely to be the most common example. In the second
example the JSP page is compiled into a servlet that uses only Servlet 2.4 and JSP
2.0 API calls; the servlet is then packaged into a WAR with a deployment descriptor
such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix
relates more to the Servlet 2.4 capabilities than to the JSP 2.0 capabilities. The
appendix is included here as this is a feature that JSP page authors and JSP page
authoring tools are interested in.

JSP.A.1A Very Simple JSP Page

We start with a very simple JSP page HelloWorld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>
Hello World
</p>

JSP.A.2The JSP Page Packaged as Source in a WAR File

The JSP page can be packaged into a WAR file by just placing it at location /

HelloWorld.jsp the default JSP page extension mapping will pick it up. The web.xml

is trivial:

PACKAGING JSP PAGES3-4

JavaServer Pages 2.0 Specification

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<session-config>

<session-timeout> 1 </session-timeout>
</session-config>

</webapp>

JSP.A.3The Servlet for the Compiled JSP Page

As an alternative, we will show how one can compile the JSP page into a servlet
class to run in a JSP container.

The JSP page is compiled into a servlet with some implementation dependent
name com.acme._jsp_HelloWorld_XXX_Impl. The servlet code only depends on the
JSP 2.0 and Servlet 2.4 APIs, as follows:

package com.acme;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public class _jsp_HelloWorld_XXX_Impl
extends PlatformDependent_Jsp_Super_Impl

{
public void _jspInit() {

// ...
}

public void jspDestroy() {
// ...

}

static JspFactory_factory= JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException

3-5

JavaServer Pages 2.0 Specification

{
Object page= this;
HttpSessionsession= request.getSession();
ServletConfigconfig= getServletConfig();
ServletContextapplication = config.getServletContext();

PageContextpageContext
= _factory.getPageContext(this,

request,
response,
(String)NULL,
true,
JspWriter.DEFAULT_BUFFER,
true
);

JspWriterout= pageContext.getOut();
// page context creates initial JspWriter "out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}
}

}

JSP.A.4The Web Application Descriptor

The servlet is made to look as a JSP page with the following web.xml:

PACKAGING JSP PAGES3-6

JavaServer Pages 2.0 Specification

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<webapp>
<servlet>

<servlet-name> HelloWorld </servlet-name>
<servlet-class>com.acme._jsp_HelloWorld_XXX_Impl</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> HelloWorld </servlet-name>
<url-pattern> /HelloWorld.jsp </url-pattern>

</servlet-mapping>

<session-config>
<session-timeout> 1 </session-timeout>

</session-config>
</webapp>

JSP.A.5The WAR for the Compiled JSP Page

Finally everything is packaged together into a WAR:

/WEB-INF/web.xml

/WEB-INF/classes/com/acme/_jsp_HelloWorld_XXX_Impl.class

Note that if the servlet class generated for the JSP page had depended on some
support classes, they would have to be included in the WAR.

3-7JavaServer Pages 2.0 Specification

A P P E N D I X JSP.B
JSP Elements of web.xml

This appendix describes the JSP elements of the Servlet 2.4 Web Application
Deployment Descriptor, which is described using XML Schema. The Servlet 2.4
deployment descriptor schema includes the definitions that appear in this Appendix.

This is the same XML Schema as http://java.sun.com/xml/ns/j2ee/jsp_2_0.xsd,
except for some formatting changes to extract comments and make them more
readable.

JSP.B.1XML Schema for JSP 2.0 Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.0">

 <xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP 2.0 deployment descriptor

 types. The JSP 2.0 schema contains all the special

 structures and datatypes that are necessary to use JSP files

 from a web application.

 The contents of this schema is used by the web-app_2_4.xsd

 file to define JSP specific content.

3-8

JavaServer Pages 2.0 Specification

 </xsd:documentation>

 </xsd:annotation>

 <xsd:annotation>

 <xsd:documentation>

 The following conventions apply to all J2EE

 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e., those not

 starting with "/") are considered relative to the root of

 the JAR file’s namespace. Absolute filenames (i.e., those

 starting with "/") also specify names in the root of the

 JAR file’s namespace. In general, relative names are

 preferred. The exception is .war files where absolute

 names are preferred for consistency with the Servlet API.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:complexType name="jsp-configType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-configType is used to provide global configuration

 information for the JSP files in a web application. It has

 two subelements, taglib and jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="taglib"

 type="j2ee:taglibType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="jsp-property-group"

 type="j2ee:jsp-property-groupType"

 minOccurs="0"

 maxOccurs="unbounded"/>

3-9

JavaServer Pages 2.0 Specification

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-fileType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-file element contains the full path to a JSP file

 within the web application beginning with a `/’.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:pathType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="jsp-property-groupType">

 <xsd:annotation>

 <xsd:documentation>

 The jsp-property-groupType is used to group a number of

 files so they can be given global property information.

 All files so described are deemed to be JSP files. The

 following additional properties can be described:

 - Control whether EL is ignored

 - Control whether scripting elements are invalid

 - Indicate pageEncoding information.

 - Indicate that a resource is a JSP document (XML)

 - Prelude and Coda automatic includes.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="url-pattern"

 type="j2ee:url-patternType"

3-10

JavaServer Pages 2.0 Specification

 maxOccurs="unbounded"/>

 <xsd:element name="el-ignored"

 type="j2ee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily set the isELIgnored

 property of a group of JSP pages. By default, the

 EL evaluation is enabled for Web Applications using

 a Servlet 2.4 or greater web.xml, and disabled

 otherwise.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="page-encoding"

 type="j2ee:string"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The valid values of page-encoding are those of the

 pageEncoding page directive. It is a

 translation-time error to name different encodings

 in the pageEncoding attribute of the page directive

 of a JSP page and in a JSP configuration element

 matching the page. It is also a translation-time

 error to name different encodings in the prolog

 or text declaration of a document in XML syntax and

 in a JSP configuration element matching the document.

 It is legal to name the same encoding through

 mulitple mechanisms.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scripting-invalid"

 type="j2ee:true-falseType"

 minOccurs="0">

3-11

JavaServer Pages 2.0 Specification

 <xsd:annotation>

 <xsd:documentation>

 Can be used to easily disable scripting in a

 group of JSP pages. By default, scripting is

 enabled.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="is-xml"

 type="j2ee:true-falseType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 If true, denotes that the group of resources

 that match the URL pattern are JSP documents,

 and thus must be interpreted as XML documents.

 If false, the resources are assumed to not

 be JSP documents, unless there is another

 property group that indicates otherwise.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="include-prelude"

 type="j2ee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-prelude element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the beginning of each

 JSP page in this jsp-property-group.

3-12

JavaServer Pages 2.0 Specification

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="include-coda"

 type="j2ee:pathType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The include-coda element is a context-relative

 path that must correspond to an element in the

 Web Application. When the element is present,

 the given path will be automatically included (as

 in an include directive) at the end of each

 JSP page in this jsp-property-group.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="taglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglibType defines the syntax for declaring in

 the deployment descriptor that a tag library is

 available to the application. This can be done

 to override implicit map entries from TLD files and

 from the container.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="taglib-uri"

 type="j2ee:string">

3-13

JavaServer Pages 2.0 Specification

 <xsd:annotation>

 <xsd:documentation>

 A taglib-uri element describes a URI identifying a

 tag library used in the web application. The body

 of the taglib-uri element may be either an

 absolute URI specification, or a relative URI.

 There should be no entries in web.xml with the

 same taglib-uri value.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="taglib-location"

 type="j2ee:pathType">

 <xsd:annotation>

 <xsd:documentation>

 the taglib-location element contains the location

 (as a resource relative to the root of the web

 application) where to find the Tag Library

 Description file for the tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

3-14

JavaServer Pages 2.0 Specification

3-15JavaServer Pages 2.0 Specification

A P P E N D I X JSP.C
Tag Library Descriptor

Formats

This appendix includes the XML Schema and DTD files for tag library
descriptors using each version of the JSP specification (from JSP 1.1 to current). All
JSP 2.0 containers are required to be able to parse and accept all TLD formats
described in this appendix. The formats are listed in order from most recent to least
recent.

JSP.C.1XML Schema for TLD, JSP 2.0

The following is an XML Schema file describing a Tag Library Descriptor in a
JSP 2.0 format. This is the same XSD as http://java.sun.com/xml/ns/j2ee/web-

jsptaglibrary_2_0.xsd, except for some formatting changes to extract comments and
make them more readable. Some of the types used in this XSD are defined in the
J2EE Platform Specification (see Related Documents in the Preface for a link to this
specification).

The schema is preceeded by a set of diagrams that graphically illustrate the
element structure of the schema. The symbols ‘+’, ‘*’, ‘|’, ‘(’ and ‘)’ have the
same meaning as in DTD. In the event of a discrepancy between these diagrams
and the schema, the schema prevails.

3-16

JavaServer Pages 2.0 Specification

Figure JSP.C-1 TLD Schema Element Structure

Figure JSP.C-2 TLD Schema Element Structure - listener

taglib

description*

icon*

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function

description*

display-name*

icon*

small-icon?

large-icon?

tlib-version

short-name

uri?

validator?

listener*

tag*

tag-file*

function*

taglib-extension* extension-element+

description*

validator-class

init-param* description*

param-name

param-value

See Below...

See Below...

See Below...

See Below...

listener*

description*

display-name*

icon*

small-icon?

large-icon?
listener-class

3-17

JavaServer Pages 2.0 Specification

Figure JSP.C-3 TLD Schema Element Structure - tag

tag*

description*

display-name*

icon*

small-icon?

large-icon?

name

tag-class

tei-class?

body-content

variable*

attribute*

dynamic-attributes?

example?

tag-extension* extension-element+

description*

name-given |
name-from-attribute

variable-class?

declare?

scope?

description*

name

required?

(rtexprvalue? type?)
| fragment?

3-18

JavaServer Pages 2.0 Specification

Figure JSP.C-4 TLD Schema Element Structure - tag-file

Figure JSP.C-5 TLD Schema Element Structure - function

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

tag-file*

description*

display-name*

icon*

small-icon?

large-icon?
name

path

example?

tag-extension* extension-element+

function*

description*

display-name*

icon*

small-icon?

large-icon?
name

function-class

function-signature

example?

function-extension* extension-element+

3-19

JavaServer Pages 2.0 Specification

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.0">

<xsd:annotation>

 <xsd:documentation>

 This is the XML Schema for the JSP Taglibrary

 descriptor. All Taglibrary descriptors must

 indicate the tag library schema by using the Taglibrary

 namespace:

 http://java.sun.com/xml/ns/j2ee

 and by indicating the version of the schema by

 using the version element as shown below:

 <taglib xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="..."

 version="2.0">

 ...

 </taglib>

 The instance documents may indicate the published

 version of the schema using xsi:schemaLocation attribute

 for J2EE namespace with the following location:

 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd

 </xsd:documentation>

 </xsd:annotation>

 <xsd:include schemaLocation="j2ee_1_4.xsd"/>

<!-- ** -->

 <xsd:element name="taglib" type="j2ee:tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root.

 The definition of taglib is provided

 by the tldTaglibType.

3-20

JavaServer Pages 2.0 Specification

 </xsd:documentation>

 </xsd:annotation>

 <xsd:unique name="tag-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains, among other things, tag and

 tag-file elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:tag|j2ee:tag-file"/>

 <xsd:field xpath="j2ee:name"/>

 </xsd:unique>

 <xsd:unique name="function-name-uniqueness">

 <xsd:annotation>

 <xsd:documentation>

 The taglib element contains function elements.

 The name subelements of these elements must each be unique.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:selector xpath="j2ee:function"/>

 <xsd:field xpath="j2ee:name"/>

 </xsd:unique>

 </xsd:element>

<!-- ** -->

 <xsd:complexType name="body-contentType">

 <xsd:annotation>

 <xsd:documentation>

 Specifies the type of body that is valid for a tag.

 This value is used by the JSP container to validate

 that a tag invocation has the correct body syntax and

 by page composition tools to assist the page author

 in providing a valid tag body.

3-21

JavaServer Pages 2.0 Specification

 There are currently four values specified:

 tagdependent The body of the tag is interpreted by the tag

 implementation itself, and is most likely

 in a different "language", e.g embedded SQL

 statements.

 JSP The body of the tag contains nested JSP

 syntax.

 empty The body must be empty

 scriptless The body accepts only template text, EL

 Expressions, and JSP action elements. No

 scripting elements are allowed.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="tagdependent"/>

 <xsd:enumeration value="JSP"/>

 <xsd:enumeration value="empty"/>

 <xsd:enumeration value="scriptless"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="extensibleType" abstract="true">

 <xsd:annotation>

 <xsd:documentation>

 The extensibleType is an abstract base type that is used to

 define the type of extension-elements. Instance documents

 must substitute a known type to define the extension by

 using xsi:type attribute to define the actual type of

 extension-elements.

 </xsd:documentation>

 </xsd:annotation>

3-22

JavaServer Pages 2.0 Specification

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="functionType">

 <xsd:annotation>

 <xsd:documentation>

 The function element is used to provide information on each

 function in the tag library that is to be exposed to the EL.

 The function element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name A unique name for this function

 function-class Provides the name of the Java class that

 implements the function

 function-signature Provides the signature, as in the Java

 Language Specification, of the Java

 method that is to be used to implement

 the function.

 example Optional informal description of an

 example of a use of this function

function-extension Zero or more extensions that provide extra

 information about this function, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

3-23

JavaServer Pages 2.0 Specification

 type="j2ee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 A unique name for this function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Provides the fully-qualified class name of the Java

 class containing the static method that implements

 the function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-signature"

 type="j2ee:string">

 <xsd:annotation>

 <xsd:documentation>

 Provides the signature, of the static Java method that is

 to be used to implement the function. The syntax of the

 function-signature element is as follows:

 FunctionSignature ::= ReturnType S MethodName S?

 ’(’ S? Parameters? S? ’)’

 ReturnType ::= Type

 MethodName ::= Identifier

 Parameters ::= Parameter

| (Parameter S? ’,’ S? Parameters)

3-24

JavaServer Pages 2.0 Specification

 Parameter ::= Type

 Where:

 * Type is a basic type or a fully qualified

 Java class name (including package name),

 as per the ’Type’ production in the Java

 Language Specification, Second Edition,

 Chapter 18.

 * Identifier is a Java identifier, as per

 the ’Identifier’ production in the Java

 Language Specification, Second

 Edition, Chapter 18.

 Example:

 java.lang.String nickName(java.lang.String, int)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of this function.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="function-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

3-25

JavaServer Pages 2.0 Specification

Function extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tagFileType">

 <xsd:annotation>

 <xsd:documentation>

 Defines an action in this tag library that is implemented

 as a .tag file.

 The tag-file element has two required subelements:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

path Where to find the .tag file implementing this

 action, relative to the root of the web

application or the root of the JAR file for a

 tag library packaged in a JAR. This must

 begin with /WEB-INF/tags if the .tag file

resides in the WAR, or /META-INF/tags if the

 .tag file resides in a JAR.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

 information about this tag, for tool

3-26

JavaServer Pages 2.0 Specification

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

 type="j2ee:tld-canonical-nameType"/>

 <xsd:element name="path"

 type="j2ee:pathType"/>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tag-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

3-27

JavaServer Pages 2.0 Specification

<!-- ** -->

 <xsd:complexType name="tagType">

 <xsd:annotation>

 <xsd:documentation>

 The tag defines a unique tag in this tag library. It has one

 attribute, id.

 The tag element may have several subelements defining:

 description Optional tag-specific information

 display-name A short name that is intended to be

 displayed by tools

 icon Optional icon element that can be used

 by tools

 name The unique action name

 tag-class The tag handler class implementing

 javax.servlet.jsp.tagext.JspTag

 tei-class An optional subclass of

 javax.servlet.jsp.tagext.TagExtraInfo

 body-content The body content type

 variable Optional scripting variable information

 attribute All attributes of this action that are

 evaluated prior to invocation.

 dynamic-attributes Whether this tag supports additional

 attributes with dynamic names. If

 true, the tag-class must implement the

 javax.servlet.jsp.tagext.DynamicAttributes

 interface. Defaults to false.

 example Optional informal description of an

 example of a use of this tag

 tag-extension Zero or more extensions that provide extra

3-28

JavaServer Pages 2.0 Specification

 information about this tag, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="name"

 type="j2ee:tld-canonical-nameType"/>

 <xsd:element name="tag-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the subclass of javax.serlvet.jsp.tagext.JspTag

 that implements the request time semantics for

 this tag. (required)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tei-class"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo

 for this tag. (optional)

 If this is not given, the class is not consulted at

 translation time.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="body-content"

 type="j2ee:body-contentType">

3-29

JavaServer Pages 2.0 Specification

 <xsd:annotation>

 <xsd:documentation>

 Specifies the format for the body of this tag.

 The default in JSP 1.2 was "JSP" but because this

 is an invalid setting for simple tag handlers, there

 is no longer a default in JSP 2.0. A reasonable

 default for simple tag handlers is "scriptless" if

 the tag can have a body.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="variable"

 type="j2ee:variableType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="attribute"

 type="j2ee:tld-attributeType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="dynamic-attributes"

 type="j2ee:generic-booleanType"

 minOccurs="0"/>

 <xsd:element name="example"

 type="j2ee:xsdStringType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The example element contains an informal description

 of an example of the use of a tag.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="tag-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

3-30

JavaServer Pages 2.0 Specification

 Tag extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-attributeType">

 <xsd:annotation>

 <xsd:documentation>

 The attribute element defines an attribute for the nesting

 tag. The attributre element may have several subelements

 defining:

 description a description of the attribute

 name the name of the attribute

 required whether the attribute is required or

 optional

 rtexprvalue whether the attribute is a runtime attribute

 type the type of the attributes

 fragment whether this attribute is a fragment

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="name"

 type="j2ee:java-identifierType"/>

 <xsd:element name="required"

 type="j2ee:generic-booleanType"

3-31

JavaServer Pages 2.0 Specification

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute is required or

 optional.

 If not present then the default is "false", i.e

 the attribute is optional.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:choice>

 <xsd:sequence>

 <xsd:element name="rtexprvalue"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines if the nesting attribute can have scriptlet

 expressions as a value, i.e the value of the

 attribute may be dynamically calculated at request

 time, as opposed to a static value determined at

 translation time.

 If not present then the default is "false", i.e the

 attribute has a static value

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="type"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines the Java type of the attributes value. For

3-32

JavaServer Pages 2.0 Specification

 static values (those determined at translation time)

 the type is always java.lang.String.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:element name="fragment"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 "true" if this attribute is of type

 javax.jsp.tagext.JspFragment, representing dynamic

 content that can be re-evaluated as many times

 as needed by the tag handler. If omitted or "false",

 the default is still type="java.lang.String"

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the canonical name of a tag or attribute being

 defined.

 The name must conform to the lexical rules for an NMTOKEN.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

3-33

JavaServer Pages 2.0 Specification

 <xsd:restriction base="j2ee:xsdNMTOKENType"/>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tld-extensionType">

 <xsd:annotation>

 <xsd:documentation>

 The tld-extensionType is used to indicate

 extensions to a specific TLD element.

 It is used by elements to designate an extension block

 that is targeted to a specific extension designated by

 a set of extension elements that are declared by a

 namespace. The namespace identifies the extension to

 the tool that processes the extension.

 The type of the extension-element is abstract. Therefore,

 a concrete type must be specified by the TLD using

 xsi:type attribute for each extension-element.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="extension-element"

 type="j2ee:extensibleType"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:attribute name="namespace"

 use="required"

 type="xsd:anyURI"/>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="tldTaglibType">

 <xsd:annotation>

 <xsd:documentation>

 The taglib tag is the document root, it defines:

3-34

JavaServer Pages 2.0 Specification

 description a simple string describing the "use" of this

 taglib, should be user discernable

 display-name the display-name element contains a

 short name that is intended to be displayed

 by tools

 icon optional icon that can be used by tools

 tlib-version the version of the tag library implementation

 short-name a simple default short name that could be

 used by a JSP authoring tool to create

 names with a mnemonic value; for example,

 the it may be used as the prefered prefix

 value in taglib directives

 uri a uri uniquely identifying this taglib

 validator optional TagLibraryValidator information

 listener optional event listener specification

 tag tags in this tag library

 tag-file tag files in this tag library

 function zero or more EL functions defined in this

 tag library

 taglib-extension zero or more extensions that provide extra

 information about this taglib, for tool

 consumption

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="j2ee:descriptionGroup"/>

 <xsd:element name="tlib-version"

 type="j2ee:dewey-versionType">

 <xsd:annotation>

 <xsd:documentation>

3-35

JavaServer Pages 2.0 Specification

 Describes this version (number) of the taglibrary.

 It is described as a dewey decimal.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="short-name"

 type="j2ee:tld-canonical-nameType">

 <xsd:annotation>

 <xsd:documentation>

 Defines a simple default name that could be used by

 a JSP authoring tool to create names with a

 mnemonicvalue; for example, it may be used as the

 preferred prefix value in taglib directives. Do

 not use white space, and do not start with digits

 or underscore.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="uri"

 type="j2ee:xsdAnyURIType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Defines a public URI that uniquely identifies this

 version of the taglibrary. Leave it empty if it

 does not apply.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="validator"

 type="j2ee:validatorType"

 minOccurs="0">

 </xsd:element>

 <xsd:element name="listener"

 type="j2ee:listenerType"

3-36

JavaServer Pages 2.0 Specification

 minOccurs="0" maxOccurs="unbounded">

 </xsd:element>

 <xsd:element name="tag"

 type="j2ee:tagType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="tag-file"

 type="j2ee:tagFileType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="function"

 type="j2ee:functionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="taglib-extension"

 type="j2ee:tld-extensionType"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

Taglib extensions are for tool use only and must not affect

 the behavior of a container.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="version"

 type="j2ee:dewey-versionType"

 fixed="2.0"

 use="required">

 <xsd:annotation>

 <xsd:documentation>

 Describes the JSP version (number) this taglibrary

 requires in order to function (dewey decimal)

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

3-37

JavaServer Pages 2.0 Specification

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="validatorType">

 <xsd:annotation>

 <xsd:documentation>

 A validator that can be used to validate

 the conformance of a JSP page to using this tag library is

 defined by a validatorType.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="validator-class"

 type="j2ee:fully-qualified-classType">

 <xsd:annotation>

 <xsd:documentation>

 Defines the TagLibraryValidator class that can be used

 to validate the conformance of a JSP page to using this

 tag library.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="init-param"

 type="j2ee:param-valueType"

 minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>

 The init-param element contains a name/value pair as an

 initialization param.

3-38

JavaServer Pages 2.0 Specification

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variable-scopeType">

 <xsd:annotation>

 <xsd:documentation>

 This type defines scope of the scripting variable. See

 TagExtraInfo for details. The allowed values are,

 "NESTED", "AT_BEGIN" and "AT_END".

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="j2ee:string">

 <xsd:enumeration value="NESTED"/>

 <xsd:enumeration value="AT_BEGIN"/>

 <xsd:enumeration value="AT_END"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="variableType">

 <xsd:annotation>

 <xsd:documentation>

 The variableType provides information on the scripting

 variables defined by using this tag. It is a (translation

 time) error for a tag that has one or more variable

 subelements to have a TagExtraInfo class that returns a

 non-null value from a call to getVariableInfo().

 The subelements of variableType are of the form:

 description Optional description of this

3-39

JavaServer Pages 2.0 Specification

 variable

 name-given The variable name as a constant

 name-from-attribute The name of an attribute whose

 (translation time) value will

 give the name of the

 variable. One of name-given or

 name-from-attribute is required.

 variable-class Name of the class of the variable.

 java.lang.String is default.

 declare Whether the variable is declared

 or not. True is the default.

 scope The scope of the scripting varaible

 defined. NESTED is default.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="description"

 type="j2ee:descriptionType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:choice>

 <xsd:element name="name-given"

 type="j2ee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

 The name for the scripting variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="name-from-attribute"

 type="j2ee:java-identifierType">

 <xsd:annotation>

 <xsd:documentation>

3-40

JavaServer Pages 2.0 Specification

 The name of an attribute whose

 (translation-time) value will give the name of

 the variable.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 <xsd:element name="variable-class"

 type="j2ee:fully-qualified-classType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 The optional name of the class for the scripting

 variable. The default is java.lang.String.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="declare"

 type="j2ee:generic-booleanType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

 Whether the scripting variable is to be defined

 or not. See TagExtraInfo for details. This

 element is optional and "true" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="scope"

 type="j2ee:variable-scopeType"

 minOccurs="0">

 <xsd:annotation>

 <xsd:documentation>

3-41

JavaServer Pages 2.0 Specification

 The element is optional and "NESTED" is the default.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:ID"/>

 </xsd:complexType>

</xsd:schema>

JSP.C.2DTD for TLD, JSP 1.2

The following is a DTD describing a Tag Library Descriptor file in JSP 1.2
format. This is the same DTD as "http://java.sun.com/dtd/web-
jsptaglibrary_1_2.dtd", except for some formatting changes to extract comments
and make them more readable:

<!--
This is the DTD defining the JavaServer Pages 1.2 Tag Library descriptor (.tld)
(XML) file format/syntax.
A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
file, along with the appropriate implementation classes and other resources re-
quired to implement the actions defined therein. When deployed inside a JAR file,
the tag library descriptor files must be in the META-INF directory, or a subdirec-
tory of it. When deployed directly into a web application, the tag library descriptor
files must always be in the WEB-INF directory, or some subdirectory of it.
Packaged tag libraries must have at least one tag library descriptor file. The JSP
1.1 specification allowed for only a single TLD, in META-INF/taglib.tld, but in JSP
1.2 multiple tag libraries are allowed.
Use is subject to license terms.
-->

<!NOTATION WEB-JSPTAGLIB.1_2 PUBLIC “-//Sun Microsystems, Inc.//DTD
JSP Tag Library 1.2//EN”>

<!--
All JSP 1.2 tag library descriptors must include a DOCTYPE of the following form:

3-42

JavaServer Pages 2.0 Specification

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library
1.2//EN" "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
-->

<!--
The taglib element is the document root, it defines:

tlib-version the version of the tag library implementation
jsp-version the version of JSP the tag library depends upon
short-name a simple default name that could be used by a JSP authoring
tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives
uri a uri uniquely identifying this taglib
display-name the display-name element contains a short name that is intend-
ed to be displayed by tools
small-icon optional small-icon that can be used by tools
large-icon optional large-icon that can be used by tools
description a simple string describing the “use” of this taglib, should be user
discernable
validator optional TagLibraryValidator information
listener optional event listener specification
-->

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-name?,
small-icon?, large-icon?, description?, validator?, listener*, tag+) >

<!ATTLIST taglib
id ID #IMPLIED
xmlns CDATA #FIXED “http://java.sun.com/JSP/TagLibraryDescriptor”>

<!--
The value of the tlib-version element describes this version (number) of the tagl-
ibrary. This element is mandatory.

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT tlib-version (#PCDATA)

3-43

JavaServer Pages 2.0 Specification

<!--
The value of the jsp-version element describes the JSP version (number) this
taglibrary requires in order to function. This element is mandatory. The value that
should be used for JSP 1.2 is "1.2" (no quotes).

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT jsp-version (#PCDATA) >

<!--
The value of the short-name element is a name that could be used by a JSP au-
thoring tool to create names with a mnemonic value; for example, it may be used
as the prefered prefix value in taglib directives.

Do not use white space, and do not start with digits or underscore.

#PCDATA ::= NMTOKEN
-->

<!ELEMENT short-name (#PCDATA) >

<!--
The value of the uri element is a public URI that uniquely identifies the exact se-
mantics of this taglibrary.
-->

<!ELEMENT uri (#PCDATA) >

<!--
The value of the description element is an arbitrary text string describing the tag
library.
-->

<!ELEMENT description(#PCDATA) >

<!--
The validator element provides information on an optional validator that can be
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator (validator-class, init-param*, description?) >

3-44

JavaServer Pages 2.0 Specification

<!--
The validator-class element defines the TagLibraryValidator class that can be
used to validate the conformance of a JSP page to using this tag library.
-->

<!ELEMENT validator-class (#PCDATA) >

<!--
The init-param element contains a name/value pair as an initialization param.
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--
The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--
The listener element defines an optional event listener object to be instantiated
and registered automatically.
-->

<!ELEMENT listener (listener-class) >

<!--
The listener-class element declares a class in the application that must be regis-
tered as a web application listener bean.

See the Servlet 2.3 specification for details.
-->

<!ELEMENT listener-class (#PCDATA) >

3-45

JavaServer Pages 2.0 Specification

<!--
The tag element defines an action in this tag library. The tag element has one at-
tribute, id.
The tag element may have several subelements defining:
name The unique action name
tag-class The tag handler class implementing javax.servlet.jsp.tagext.Tag
tei-class An optional subclass of javax.servlet.jsp.tagext.TagExtraInfo
body-content The body content type
display-name A short name that is intended to be displayed by tools
small-icon Optional small-icon that can be used by tools
large-icon Optional large-icon that can be used by tools
description Optional tag-specific information
variable Optional scripting variable information
attribute All attributes of this action
example Optional informal description of an example of a use of this ac-
tion.
-->

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?,
small-icon?, large-icon?, description?, variable*, attribute*, example?) >

<!--
The tag-class element indicates the subclass of javax.serlvet.jsp.tagext.Tag that
implements the request time semantics for this tag. This element is required.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tag-class (#PCDATA) >

<!--
The tei-class element indicates the subclass of javax.servlet.jsp.tagext.TagEx-
traInfo for this tag. The class is instantiated at translation time. This element is
optional.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tei-class (#PCDATA) >

3-46

JavaServer Pages 2.0 Specification

<!--
The body-content element provides provides information on the content of the
body of this tag. This element is primarily intended for use by page composition
tools.
There are currently three values specified:

tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax
empty The body must be empty
This element is optional; the default value is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<!ELEMENT body-content (#PCDATA) >

<!--
The display-name element contains a short name that is intended to be displayed
by tools.
-->

<!ELEMENT display-name (#PCDATA) >

<!--
The large-icon element contains the name of a file containing a large (32 x 32)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT large-icon (#PCDATA) >

<!--
The small-icon element contains the name of a file containing a small (16 x 16)
icon image. The icon can be used by tools. The file name is a relative path within
the tag library.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix “.jpg” or “.gif” respectively.
-->

<!ELEMENT small-icon (#PCDATA) >

3-47

JavaServer Pages 2.0 Specification

<!--
The example element provides an informal description of an example of the use
of a tag.
-->

<!ELEMENT example (#PCDATA) >

<!--
The variable element provides information on the scripting variables defined by
this tag.

It is a (translation time) error for an action that has one or more variable subele-
ments to have a TagExtraInfo class that returns a non-null object.

The subelements of variable are of the form:

name-given The variable name as a constant
name-from-attribute The name of an attribute whose (translation time) value will
give the name of the variable. One of name-given or name-from-attribute is re-
quired.
variable-class Name of the class of the variable. java.lang.String is default.
declare Whether the variable is declared or not. True is the default.
scope The scope of the scripting variable defined. NESTED is de-
fault.
-->

<!ELEMENT variable ((name-given | name-from-attribute), variable-class?, de-
clare?, scope?, description?) >

<!--
The name-given element provides the name for the scripting variable.

One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-given (#PCDATA) >

<!--
The value of the name-from-attribute element is the name of an attribute whose
(translation-time) value will give the name of the variable.

One of name-given or name-from-attribute is required.
-->

<!ELEMENT name-from-attribute (#PCDATA) >

3-48

JavaServer Pages 2.0 Specification

<!--
The variable-class element is the name of the class for the scripting variable.

This element is optional; the default is java.lang.String.
-->

<!ELEMENT variable-class (#PCDATA) >

<!--
The value of the declare element indicates whether the scripting variable is to be
defined or not. See TagExtraInfo for details.

This element is optional and is the default is true.
-->

<!ELEMENT declare (#PCDATA) >

<!--
The value of the scope element describes the scope of the scripting variable.

See TagExtraInfo for details.

This element is optional and the default value is the string “NESTED”. The other
legal values are “AT_BEGIN” and “AT_END”.
-->

<!ELEMENT scope (#PCDATA) >

<!--
The attribute element defines an attribute for the nesting tag.

The attributre element may have several subelements defining:
name the name of the attribute
attribute whether the attribute is required or optional
rtexpravaluewhether the attribute is a runtime attribute
type the type of the attributes
description a description of the attribute
-->

<!ELEMENT attribute (name, required? , rtexprvalue?, type?, description?) >

3-49

JavaServer Pages 2.0 Specification

<!--
The name element defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
-->

<!ELEMENT name(#PCDATA) >

<!--
The value of the required element indicates if the nesting attribute is required or
optional. This attribute is optional and its default value is false.

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT required (#PCDATA) >

<!--
The value of the rtexpvalue element indicates if the value of the attribute may be
dynamically calculated at request time, as opposed to a static value determined
at translation time. This attribute is optional and its default value is false

#PCDATA ::= true | false | yes | no
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!--
The value of the type element describes the Java type of the attributes value.

For static values (those determined at translation time) the type is always ja-
va.lang.String.
-->

<!ELEMENT type (#PCDATA) >

<!-- ID attributes -->

<!ATTLIST tlib-version id ID #IMPLIED>

<!ATTLIST jsp-version id ID #IMPLIED>

<!ATTLIST short-name id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>

3-50

JavaServer Pages 2.0 Specification

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST example id ID #IMPLIED>

<!ATTLIST tag id ID #IMPLIED>

<!ATTLIST tag-class id ID #IMPLIED>

<!ATTLIST tei-class id ID #IMPLIED>

<!ATTLIST body-content id ID #IMPLIED>

<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST name id ID #IMPLIED>

<!ATTLIST required id ID #IMPLIED>

<!ATTLIST rtexprvalue id ID #IMPLIED>

<!ATTLIST param-name id ID #IMPLIED>

<!ATTLIST param-value id ID #IMPLIED>

<!ATTLIST listener id ID #IMPLIED>

<!ATTLIST listener-class id ID #IMPLIED>

JSP.C.3DTD for TLD, JSP 1.1

The following is a DTD describing a Tag Library Descriptor file in JSP 1.1
format. This is the same DTD as http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd,
except for some formatting changes to extract comments and make them more
readable:

3-51

JavaServer Pages 2.0 Specification

<!--
This is the DTD defining the JavaServer Pages 1.1 Tag Library descriptor (.tld)
(XML) file format/syntax.

A Tag Library is a JAR file containing a valid instance of a Tag Library Descriptor
(taglib.tld) file in the META-INF subdirectory, along with the appropriate imple-
menting classes, and other resources required toimplement the tags defined
therein.

Use is subject to license terms.
-->

<!--
The taglib tag is the document root, it defines:
tlibversion the version of the tag library implementation
jspversion the version of JSP the tag library depends upon
shortname a simple default short name that could be used by a JSP authoring
tool to create names with a mnemonic value; for example, the it may be used as
the prefered prefix value in taglib directives
uri a uri uniquely identifying this taglib
info a simple string describing the “use” of this taglib, should be user dis-
cernable
-->

<!ELEMENT taglib (tlibversion, jspversion?, shortname, uri?, info?, tag+) >

<!ATTLIST taglib id ID #IMPLIED
 xmlns CDATA #FIXED
“http://java.sun.com/dtd/web-jsptaglibrary_1_1.dtd”

>

<!--
Describes this version (number) of the taglibrary (dewey decimal)

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT tlibversion (#PCDATA) >

3-52

JavaServer Pages 2.0 Specification

<!--
Describes the JSP version (number) this taglibrary requires in order to function
(dewey decimal)

The default is 1.1

#PCDATA ::= [0-9]*{ “.”[0-9] }0..3
-->

<!ELEMENT jspversion (#PCDATA) >

<!--
Defines a short (default) shortname to be used for tags and variable names used/
created by this tag library. Do not use white space, and do not start with digits or
underscore.

#PCDATA ::= NMTOKEN
-->

<!ELEMENT shortname (#PCDATA) >

<!--
Defines a public URI that uniquely identifies this version of the taglibrary Leave it
empty if it does not apply.
-->

<!ELEMENT uri (#PCDATA) >

<!--
Defines an arbitrary text string descirbing the tag library
-->

<!ELEMENT info(#PCDATA) >

<!--
The tag defines a unique tag in this tag library, defining:
- the unique tag/element name
- the subclass of javax.servlet.jsp.tagext.Tag implementation class
- an optional subclass of javax.servlet.jsp.tagext.TagExtraInfo
- the body content type (hint)
- optional tag-specific information
- any attributes
-->

<!ELEMENT tag (name, tagclass, teiclass?, bodycontent?, info?, attribute*) >

3-53

JavaServer Pages 2.0 Specification

<!--
Defines the subclass of javax.serlvet.jsp.tagext.Tag that implements the request
time semantics for this tag. (required)

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT tagclass (#PCDATA) >

<!--
Defines the subclass of javax.servlet.jsp.tagext.TagExtraInfo for this tag. (option-
al)

If this is not given, the class is not consulted at translation time.

#PCDATA ::= fully qualified Java class name
-->

<!ELEMENT teiclass (#PCDATA) >

<!--
Provides a hint as to the content of the body of this tag. Primarily intended for use
by page composition tools.

There are currently three values specified:
tagdependent The body of the tag is interpreted by the tag implementation it-
self, and is most likely in a different “langage”, e.g embedded SQL statements.
JSP The body of the tag contains nested JSP syntax
empty The body must be empty. The default (if not defined) is JSP

#PCDATA ::= tagdependent | JSP | empty
-->

<!ELEMENT bodycontent (#PCDATA) >

<!--
The attribute tag defines an attribute for the nesting tag

An attribute definition is composed of:
- the attributes name (required)
- if the attribute is required or optional (optional)
- if the attributes value may be dynamically calculated at runtime by a scriptlet ex-
pression (optional)
-->

3-54

JavaServer Pages 2.0 Specification

<!ELEMENT attribute (name, required? , rtexprvalue?) >

<!--
Defines the canonical name of a tag or attribute being defined

#PCDATA ::= NMTOKEN
-->

<!ELEMENT name(#PCDATA) >

<!--
Defines if the nesting attribute is required or optional.

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute is optional.
-->

<!ELEMENT required (#PCDATA) >

<!--
Defines if the nesting attribute can have scriptlet expressions as a value, i.e the
value of the attribute may be dynamically calculated at request time, as opposed
to a static value determined at translation time.

#PCDATA ::= true | false | yes | no

If not present then the default is “false”, i.e the attribute has a static value
-->

<!ELEMENT rtexprvalue (#PCDATA) >

<!ATTLIST tlibversion id ID #IMPLIED>

<!ATTLIST jspversion id ID #IMPLIED>

<!ATTLIST shortname id ID #IMPLIED>

<!ATTLIST uri id ID #IMPLIED>

<!ATTLIST info id ID #IMPLIED>

<!ATTLIST tag id ID #IMPLIED>

<!ATTLIST tagclass id ID #IMPLIED>

3-55

JavaServer Pages 2.0 Specification

<!ATTLIST teiclass id ID #IMPLIED>

<!ATTLIST bodycontent id ID #IMPLIED>

<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST name id ID #IMPLIED>

<!ATTLIST required id ID #IMPLIED>

<!ATTLIST rtexprvalue id ID #IMPLIED>

3-56

JavaServer Pages 2.0 Specification

3-57JavaServer Pages 2.0 Specification

A P P E N D I X JSP.D
Page Encoding Detection

This appendix details the algorithm containers are required to use in order to
determine the character encoding for a JSP file. See Chapter JSP.4, “International-
ization Issues” for details on where this algorithm is used. The algorithm is designed
to maximize convenience to the page author, while preserving backwards compati-
bility with previous versions of the JSP specification.

JSP.D.1Detection Algorithm

The following is a complete though unoptimized algorithm for determining the
character encoding for a JSP file. JSP containers may use an optimized version of
this algorithm, but it must detect the same encoding as the algorithm in all cases.

1. Decide whether the source file is a JSP page in standard syntax or a JSP
document in XML syntax.

a. If there is a <is-xml> element in a <jsp-property-group> that names this
file, then if it has the value "true", the file is a JSP document, and if it
has the value "false", the file is not a JSP document.

b. Otherwise, if the file name has the extension "jspx", the file is a JSP
document.

c. Otherwise, try to find a <jsp:root> element in the file.

i. Determine the initial encoding from the first four bytes of the file,
as described in appendix F.1 of the XML 1.0 specification. For the
byte sequence "3C 3F 78 6D", use ISO-8859-1; for the byte
sequence "4C 6F A7 94", use IBM037; for all other cases, use the
UTF-* or UCS-* encoding given in the appendix.

3-58

JavaServer Pages 2.0 Specification

ii. Read the file using the initial encoding and search for a <jsp:root>
element. If the element is found and is the top element, the file is
a JSP document in XML syntax

d. Otherwise, the file is a JSP page in standard syntax.

2. Reset the file.

3. If the file is a JSP page in standard syntax, use these steps.

a. Check whether there is a JSP configuration element <page-encoding>
whose URL pattern matches this file.

b. Read the file using the initial encoding and search for a pageEncoding
attribute in a page declaration. The specification requires the attribute
to be found only if it is not preceded by non-ASCII characters, so
simplified implementations are allowed.

c. Report an error if there are a <page-encoding> configuration element
whose URL pattern matches this file and a pageEncoding attribute,
and the two name different encodings.

d. If there is a <page-encoding> configuration element whose URL
pattern matches this file, the page character encoding is the one named
in this element.

e. Otherwise, if there is a pageEncoding attribute, the page character
encoding is the one named in this attribute.

f. Otherwise, read the file using the initial encoding and search for a
charset value within a contentType attribute in a page declaration. If it
exists, the page character encoding is the one named in this charset
value. The specification requires the attribute to be found only if it is
not preceded by non-ASCII characters, so simplified implementations
are allowed.

g. Otherwise, the page character encoding is ISO-8859-1.

4. If the file is a JSP document in XML syntax, use these steps.

a. Determine the page character encoding as described in appendix F.1 of
the XML 1.0 specification. Note whether the encoding was named in
the encoding attribute of the XML prolog or just derived from the
initial bytes.

b. Check whether there is a JSP configuration element <page-encoding>
whose URL pattern matches this file.

3-59

JavaServer Pages 2.0 Specification

c. Read the file using the detected encoding and search for a
pageEncoding attribute in a <jsp:directive.page> element.

d. Report an error if any of the following conditions is met:

i. The XML prolog names an encoding and there is <page-
encoding> configuration element whose URL pattern matches this
file and which names a different encoding.

ii. The XML prolog names an encoding and there is a pageEncoding
attribute which names a different encoding.

iii. There are a <page-encoding> configuration element whose URL
pattern matches this file and a pageEncoding attribute, and the two
name different encodings.

5. Reset the file and read it using the page character encoding.

3-60

JavaServer Pages 2.0 Specification

3-61JavaServer Pages 2.0 Specification

A P P E N D I X JSP.E
Changes

This appendix lists the changes in the JavaServer Pages specification. This
appendix is non-normative.

JSP.E.1Changes between JSP 2.0 PFD3 and JSP 2.0 Final

• Minor typos and clarifications.

• API Changes:

■ Changed javax.servlet.jsp.tagext.JspFragment from an interface to an ab-
stract class. Made JspFragment.invoke() abstract.

■ Added JspFragment.getJspContext() method.

• Added section on compatibility and porting issues between JSP 1.2 and JSP
2.0 to Preface.

• Minor clarifications to JSR-45 line number mapping guidelines.

• Clarified use of <jsp:output> in tag files.

• Added doctype-root-element, doctype-public and doctype-system properties to
<jsp:output> for outputting DOCTYPE in JSP XML sytnax.

• Requires that the JSP stratum is the default, for JSR-45 debugging.

• Added I18N detection algorithm appendix.

• Added element structure diagrams for TLD schema.

• Removed requirement on ordering of attribute setter calls, except for
<jsp:attribute>.

3-62

JavaServer Pages 2.0 Specification

• Clarified that a TLD is invalid if it specifies "JSP" as the <body-content> for a
SimpleTag extension.

• Made the JSR-45 requirement optional.

• Clarified ranges of EL integer and floating point literals.

• Clarified semantics for cross-syntax translation-time includes (between stan-
dard and XML syntaxes). Added three examples to illustrate these semantics.

• Loosened checking for duplicate page directive attributes and duplicate taglib

directive declarations to make static includes more useful. Duplicates are now
okay so long as the values are identical in both places.

• Re-enabled preludes and codas for JSP Documents (XML syntax).

• Removed special behavior of the id attribute for custom tags. Virtually no con-
tainers implement this feature and it was thought solidifying this requirement
in JSP 2.0 would berak applications.

• Clarified that the uri passed to TagLibraryValidator.validate() is the uri in the
XML View, not necessarily the value of the uri attribute in the taglib directive.

JSP.E.2Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3

• Minor typos and clarifications.

• Added \$ as a way to quote $ in template text and attribute values, both in
standard and XML syntaxes. This enabled quoting of EL expressions. Quot-
ing of $ is disabled for pages where EL is ignored, for backwards compatibil-
ity. Described the XML view for quoting EL expressions.

• Changes to the API:

■ NullPointerException must be thrown for null name in various methods.

■ Allow null passed as default prefix in EL API to indicate a prefix is required.

■ SimpleTagSupport: Made jspBody and jspContext fields private. Made
getJspBody() and getJspContext() accessors protected.

■ ExpressionEvaluator: Changed so that only one EL expression can be parsed
or evaluated at a time, with no intermixed static text. Removed defaultPrefix
parameters and changed so that FunctionMappers can mutate between Ex-
pressionEvaluator.parseExpression() and Expression.evaluate().

■ Updated javadocs for JspWriter to indicate that the resulting text is written to
the buffer or underlying writer directly, and not converted to the platform’s

3-63

JavaServer Pages 2.0 Specification

default encoding first, which would make no sense in this context.

• Changes to Tag Library Descriptor (TLD):

■ Added descriptionGroup, example and extension elements to <tag-file>.

■ Moved definitions of j2ee:extensibleType and j2ee:tld-extensionType to web-
jsptaglibrary_2_0.xsd.

■ Added function-extension element.

■ Updated tag-name-uniqueness to check for uniqueness across name ele-
ments both in tag and tag-file elements. Removed tag-file-name-uniqueness.

■ Removed capital versions of TAGDEPENDENT, EMPTY, and SCRIPTLESS
enumerations in body-contentType.

■ Reformatted indentation.

■ Added example of how to write a schema for a TLD extension.

• Changes to the Expression Language (EL):

■ Clarified that the container must check EL syntax at translation time.

■ Removed rules for escaping EL expression output. in EL chapter.

■ Added conditional operator (A ? B : C).

■ Added coercion rules for target type Long.

■ The empty operator can now be applied to any Collection.

■ In all cases, omitting the prefix of a function now means the function is as-
sociated with the default namespace.

• EBNF Grammar Changes:

■ Better handling for syntax errors for unmatched action tags

■ Added logic to handle quoting EL expressions.

• Changed conversion rules for attribute values for the empty String "" to match
EL semantics.

• Removed synchronization of variables from the page to the tag file, but kept
synchronization from tag file to page. This is consistent with classic tags.

• Changed the default value for the rtexprvalue attribute of the attribute directive
to true.

• I18N Changes:

■ During a <jsp:forward> or <jsp:include> the container is now required to en-
code the parameters using the character encoding from the request object.

3-64

JavaServer Pages 2.0 Specification

■ Character encoding is now determined for each file separately, even if one
file includes another using the include directive.

• Changed the semantics of <is-xml> so that a value of false simply indicates the
resource is not a JSP document, but rather a JSP page.

• Changed .jspx extension to only work with a Servlet 2.4 or greater web.xml.

• Synchronized behavior of error pages with the Servlet specification.

• Changed dynamic-attributes attribute of the tag directive to specify the name
of a Map to place the dynamic attributes into, instead of placing them directly
in the page scope. Dynamic attributes with a uri are ignored.

• Added alias attribute and name-from-attribute mechanism for tag files.

• Clarified behavior of Tag Library Validators when namespaces are redefined
in JSP documents.

• Added non-normative guidelines for JSR-45 line number mapping.

• Clarified that DTD validation of JSP Documents must be done by containers.

• Clarified that in JSP Documents the prefix "jsp" is not fixed for the namespace
http://java.sun.com/JSP/Page.

• Clarified that, if ’a’ is not a custom action, does not con-
tain a request-time attribute value whereas does.

JSP.E.3Changes between JSP 2.0 PFD and JSP 2.0 PFD2

• Minor typos and clarifications.

• Clarified handling of non-String types when using <jsp:attribute>.

• Clarified that JSP Configuration settings do not apply to tag files.

• Changed the way EL expressions and Scripting is enabled/disabled:

■ Removed isScriptingEnabled attribute from page/tag directive.

■ Changed <scripting-enabled> JSP Configuration element to
<scripting-invalid>

■ Changed <el-enabled> JSP Configuration element to <el-ignored>

■ Changed isELEnabled to isELIgnored.

• Clarified that EL expressions can be used to provide request-time attribute
values as well.

3-65

JavaServer Pages 2.0 Specification

• Added a grammar for the <function-signature> element in the TLD.

• Clarified expected container behavior for various illegal JSP code.

• Clarified JSP Configuration URL Patterns are as defined in the Servlet specifi-
cation.

• Clarified that for <jsp:invoke>, an IllegalStateException must occur if scope is
session and the calling page does not participate in a session.

• Clarified that invalid tag libraries must trigger a translation error.

• API Changes, including:

■ Various javadoc clarifications to enhance testability.

■ Added new pushBody(java.io.Writer) to JspContext.

■ Moved popBody() from PageContext to JspContext.

■ Removed ELException.toString()

■ Adjusted semantics of SimpleTagSupport.findAncestorWithClass() so that it
uses the return value of TagAdapter.getAdaptee() when comparing class
types, and for the final return value.

■ Clarified SkipPageException should not be manually thrown in JSP Pages.

■ Removed TagLibraryInfo.getTagdir() and corresponding protected attribute, as
it can never return anything useful. Also removed the JSP 2.0 version of the
constructor, since it only differed by its tagdir parameter.

■ Removed pContext parameter from VariableResolver.resolveVariable().

■ Changed ExpressionEvaluator from an interface to an abstract class.

■ Changed Expression from an interface to an abstract class.

■ Removed PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE and
APPLICATION_SCOPE constants from JspContext as they are duplicated in
PageContext.

• Various changes to schema for JSP portion of web.xml and to schema for
TLDs.

• Made it illegal to refer to classes in the unnamed (a.k.a. default) package,
since JDK 1.4 has stopped supporting this.

• Reduced J2SE requirement to J2SE 1.3 for standalone containers and J2SE
1.4 for J2EE 1.4 containers. Made Unicode 3.0 and JSR-45 optional when
running in J2SE 1.3 and required when running in J2SE 1.4.

3-66

JavaServer Pages 2.0 Specification

• JSR-45 SourceDebugAttribute extensions must now be generated for tag files
as well.

• Internationalization Changes:

■ Renamed the "Localization" chapter to "Internationalization", and rewrote it
for clarity, to provide more up-to-date information on JSTL, and to refer to
the Servlet specification for details of the ServletResponse behavior.

■ If the contentType charset defaults to ISO-8859-1, it isn’t passed on to the
ServletResponse, so that implicit character encoding specifications can still
override it in Servlet 2.4.

■ The page character encoding of documents in XML syntax is now always de-
tected in the XML specification. The pageEncoding attribute and/or page-en-
coding configuration element may be given, but must not disagree with the
XML prolog.

■ XML views are encoded in UTF-8, and their pageEncoding attribute is set to
reflect this. Their contentType attribute is set to reflect the contentType that
the container will pass to the ServletResponse.

• Moved details about XML view of tag files to "JSP and XML" chapter.

• Changed the way variable synchronization works in Tag Files and simple tag
handlers:

■ Removed the Map parameter from JspFragment.invoke().

■ Removed all JspFragment logic dealing with preparing and restoring the
page scope.

■ Disallowed the use of <jsp:param> in <jsp:invoke> and <jsp:doBody>

■ Removed fragment attribute from the variable directive (and from the vari-
able element in the TLD). Variables can no longer be scoped to a specific
fragment.

■ It is now a translation-time error to have a variable directive with a name-giv-
en attribute having the same value as the name attribute of an attribute direc-
tive, for a given tag file translation unit.

■ Variables appear as page-scoped attributes local to the tag file, and are syn-
chronized with the calling JspContext at various points, depending on the
scope of the variable.

■ Clarified that scripting variables are still declared for SimpleTag variables.

• Clarified what implicit objects are available to tag files.

• Removed the value attribute of the <jsp:body> standard action.

3-67

JavaServer Pages 2.0 Specification

• Added glossary entries for tag file, JSP fragment, named attribute, JSP seg-
ment, classic tag handler, simple tag handler, dynamic attribute, and JSP con-
figuration.

• Added <jsp:element> standard action to standard syntax as well.

• Expression Language

■ Clarified behavior of EL functions whose implementations are declared to
return void.

■ Specified expected behavior when an EL function throws an exception.

■ Specified that the result of an EL expression in template text is quoted, to
help in preventing cross-site scripting attacks.

■ Made rules for coercing A to Number type N more specific.

■ Added special handling for all operators for BigInteger and BigDecimal types.

• Specified stricter rules for tag handler instance reuse to improve compatibility.

• Changed behavior of JspException being thrown from dynamic attributes to
be handled as though the exception came from another setter method, instead
of having come from doStartTag() or doEndTag().

• Clarified how dynamic attributes behave with respect to namespaces.

• Relaxed the need to call setParent(null) on Simple Tag Handlers.

• Clarified that classic tag invocations with empty bodies will not cause body
methods to be invoked, even if the body content type for the tag is something
other than "empty".

• Some clarifications on how implicit taglib maps are constructed.

• EBNF Grammar Changes:

■ Fixed EBNF for Params, Fallback productions to allow for <jsp:body> to ap-
pear inside.

■ Clarified that <jsp:body> cannot be used to specify the body of <jsp:body> or
<jsp:attribute> and that <jsp:attribute> cannot be used to specify an attribute
of <jsp:attribute>.

■ Clarified that XML-style attributes, such as those used in directives, can be
separated from each other by whitespace.

■ Added <jsp:output> and <jsp:text> to grammar.

■ Corrected definition of <jsp:param>.

■ Fixed EBNF for <jsp:text>, <jsp:scriptlet>, <jsp:expression> and <jsp:decla-

3-68

JavaServer Pages 2.0 Specification

ration> so that CDATA sections are now allowed.

• Added mayscript attribute to <jsp:plugin> tag.

• Clarified <jsp-property-group> matching logic and how URL pattern overlaps
are resolved between <jsp-property-group> and <serlvet-mapping> elements.

• Clarified that a primitive cannot be used as the type of an attribute in tag files.

• Clarified that the default for the language attribute of the page directive is
java.

• Moved <jsp:element> and <jsp:text> to Standard Actions chapter. Added
<jsp:output> to Standard Actions chapter.

• Split XML chapter into two chapters - one on JSP Documents and one on
XML Views of JSP Pages and JSP Documents. Rewrote large portions of JSP
Documents chapter.

• Changed semantics of SimpleTag so that if a body is not present, setJspBody()

is not called (instead of passing null).

• Added XML syntax for tag files (.tagx).

• Made preludes and codas illegal for JSP Documents (XML syntax).

JSP.E.4Changes between JSP 2.0 PFD1a and JSP 2.0 PFD

• Synchronized Standard Actions Chapter with JSP 1.2 Errata B.

• Clarifications in the Localization Chapter to make encoding table clearer.

• Changed TagAdapter to reduce confusion for container vendors.

• EL Function implementations no longer need to be in a non-abstract class.

• Updated BNF for EL to include functions.

• Removed the restriction that the value attribute of <jsp:body> cannot be used
for Classic Tag Handlers.

• Various typographical edits and clarifications (scattered).

• In <jsp:doBody>, made it illegal to specify a <jsp:param> with the same
name as a variable with a scope of AT_BEGIN or NESTED.

• Provided a brief, non-normative overview of the SimpleTag lifecycle in the
SimpleTag javadocs for the convenience of developers.

3-69

JavaServer Pages 2.0 Specification

• Added new include() method to PageContext, with flush parameter.

• Removed name attribute from tag directive.

• Changed semantics of tag file packaging, and modified XML Schema accord-
ingly.

• Improved access to error information in error pages by adding javax.serv-
let.error.exception and providing access to other attributes via the EL.

• Filled in many missing javadoc entries in the JSP API.

• Clarified that, for tag files, if an optional attribute is declared but not passed
in, no page-scoped variable is created (used to say value is null, which is ille-
gal).

• Added TLD Deployment extensions to Tag Extensions chapter and TLD.
These extensions are only for tool consumption.

• Cleaned up description of coercion rules in Expression Language chapter.

• Clarified that Dynamic Attributes must be considered to accept request-time
expression values.

• Modified the concept of JSP documents. In JSP 1.2 we had two quite separate
syntaxes and, for instance, elements like <jsp:expression> were not available
in classic JSP syntax. In JSP 2.0 the same basic syntax is available every-
where, but a JSP page can be tagged as being an XML document and thus can
benefit from XML concepts like well-formedness, validity, and entity defini-
tions.

• Added configuration property <is-xml> to indicate that a JSP page is to be
treated as an XML document (JSP Document).

• Incorporated new XML syntax details in the Core Syntax and in the JSP doc-
uments chapter. Renamed Chapter 6 from JSP Documents to JSP and XML.

• XML syntax versions of all JSP elements are now also available in JSP pages
that are not JSP documents - this is a, backward compatible, extension from
the JSP 1.2 semantics.

• Added default interpretation of extension ".jspx" to mean a JSP document
(and thus, an XML document).

• Added a <jsp:element> element to dynamically generate XML elements.

3-70

JavaServer Pages 2.0 Specification

• Clarified that when a <jsp:useBean> element is used in an scriptless page, or
in an scriptless context (as in the body of an action so indicated), there are no
Java scripting variables created but instead an EL variable is created.

• Clarified that EL expressions are available in all attributes of both standard
and custom actions that accept run time expressions.

• Changed <jsp:invoke> and <jsp:doBody> to accept var attribute to store frag-
ment output as a String. Changed semantics of varReader so that ${reader}
no longer echoes the contents of the Reader and no longer resets the stream.
The Reader can be passed to a custom action for further processing.

• Can now use <jsp:attribute> for any standard or custom action attribute, and
can now use scriptlets and expressions in the body of <jsp:attribute> where it
makes sense.

• Removed fragment-input directive and replaced with a new fragment attribute
for the variable directive. Removed <fragment-attribute> and <fragment-in-
put> elements in the TLD and replaced them with new <attribute> subelement
called <fragment>, and new <variable> subelement called <fragment>. Up-
dated APIs for tag info accordingly.

• Clarified that the implicit objects available to JSP pages under the EL are al-
ways available through the given names.

• The EL Evaluator API has continued to evolve. Among the changes there is
now a FunctionMapper abstraction, and parsing errors are now reported
through an ELParseException. The VariableResolver Interface now is ob-
tained from the JspContext and abstracts its context.

JSP.E.5Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a

• Removed restriction that containers must not reuse JspFragment instances.

• Added javax.servlet.jsp.tagext.JspTag to the API chapter.

• Fixed EBNF for Params, Fallback productions.

• Fixed some minor typos (scattered).

• Added uniqueness constraints to XML Schema for tag/name, tag-file/name
and function/name.

• Added SkipPageException as an exception for indicating a page is to be
skipped in JspFragments and Simple Tag Handlers. Replaces SKIP_PAGE

3-71

JavaServer Pages 2.0 Specification

and EVAL_PAGE constants (only for Simple Tag Handlers - Classic Tag Han-
dlers still use those constants).

• Clarified <jsp:attribute> can be used to specify only request-time expression
attributes, and can be used for standard actions, and custom actions imple-
mented using either Classic Tag Handlers or Simple Tag Handlers. Also clari-
fied the <jsp:body> value attribute can only be used for Simple Tag Handlers
and that <jsp:attribute> can be used to specify a fragment even for Classic Tag
Handlers.

• Modified the page scope handling for Jsp Fragments and Tag Files to be much
cleaner. Removed peekPageScope(), pushPageScope() and popPage-
Scope(). Instead, fragments are assumed to share the page scope with its con-
taining page, and tag files are required to create a Jsp Context Wrapper.

• Removed javax.servlet.jsp.tagext.AttributeNotSupportedException, and re-
placed it with a simple JspException which is just as effective.

• Added two constructors to JspTagException to allow specification of the root
cause.

• Made jspContext and jspBody fields protected in SimpleTagSupport.

JSP.E.6Changes between JSP 2.0 PD1 and JSP 2.0 PD2

NOTE: JSP 2.0 PD2 was not released publicly.

• Updated I18N chapter to indicate Unicode 3.0 support and new details URL.

• Now requires JSR-45 strata name to be JSP.

• Clarified trim attribute of <jsp:attribute> is to be used at translation time.

• Fixed some minor typos (scattered).

• Renamed <el-evaluation> web.xml element to <el-enabled>

• Reorganized new features. Created a cohesive chapter about Tag Files. Simple
Tag Handler details were moved to Tag Extensions and to the API chapter.
Standard Action description was moved to Standard Action chapter.

• Added a root interface JspTag to cover Tag and SimpleTag.

• Moved all TLD DTDs to a single "Tag Library Descriptor Schemas" Appen-
dix and added the new JSP 2.0 XML Schema to that appendix.

3-72

JavaServer Pages 2.0 Specification

• Added JSP 2.0 XML Schema, which is imported by the Servlet 2.4 Web Ap-
plication Deployment Descriptor.

• Updated page directive table and grammar to include isScriptingEnabled and
isELEnabled.

• Added language, import, isScriptingEnabled and isELEnabled attributes to
tag directive.

• Applied fixes to EBNF grammar based on JSP 2.0 Preview EA1 experience

• Clarified that jsp:id is now required and added TagExtraInfo.validate() and re-
quirement that container call it instead of TagExtraInfo.isValid().

• Reorganized slightly the EL chapter to emphasize the parts of the language
that do not depend on JSP details. Also removed the description of the API in
that chapter: the javadoc-generated chapter is more complete.

• Function names now need to be unique within a tag library; arity is not used to
disambiguate functions. This was done to simplify the EL language and the
decision can be revisited in later releases based on usage experience.

• Some refinements to the EL API: a new method was added that accepts a
VariableResolver instead of a JspContext, and the prefix/shortname map has
been split into two separate maps.

JSP.E.7Changes between JSP 2.0 CD2 and JSP 2.0 PD1

• Moved all the JSP configuration description into its own chapter.

• Reordered the EBNF description to be at the end of JSP 1.3.

• Restored some pieces in the Syntax chapter that were lost in an editing opera-
tion. The only substantive piece was the description of the <include-prelude>

and <include-coda> elements, which are now in the JSP configuration chapter.

• Added details on how to implement functions in EL.

3-73

JavaServer Pages 2.0 Specification

JSP.E.8Changes between JSP 2.0 CD1 and JSP 2.0 CD2

E.8.1 Between CD2c and CD2

• Upgraded major version from JSP 1.3 to JSP 2.0, added section to the Preface
explaining change.

• Added directive examples to JSP Fragments chapter.

• Moved section describing passing attribute values via <jsp:attribute> and
<jsp:body> to syntax chapter and moved definitions of these two standard ac-
tions to Standard Actions chapter, from JSP Fragments chapter.

• Added optional scope attribute to <jsp:invoke> and <jsp:doBody>.

• Improved and simplified the way tag files are packaged. One can now package
tag files in JARs or place them in a subdirectory of /WEB-INF/tags/ and ac-
cess them without specifying a uri.

• Changed SimpleTag to not extend Tag. Added TagAdapter to handle tag col-
laboration, and removed dependency on PageContext in SimpleTag. These
changes help make SimpleTag usable in environments other than Servlet re-
quest/response.

• Changed fragment invocation via <jsp:invoke> and <jsp:doBody> to be able
to expose their result as a java.io.Reader object instead of a String. This is ex-
pected to be more efficient.

• Added <include-prelude> and <include-coda> elements to <jsp-properties-

group>. Added a description in the Syntax Chapter.

• Added a getExpressionEvaluator() method to JspContext (and, thus, to Page-

Context).

• Added better description of JSP configuration information to different chap-
ters.

• Added to-do notes on EL to Syntax chapter, sketching where the information
will go.

• Renamed elEvaluation property of page directive. The new name is isELEna-

bled, to be consistent with other properties.

3-74

JavaServer Pages 2.0 Specification

E.8.2 Between CD2b and CD2c

• Fixed syntax table so that flush is optional in <jsp:include> standard action.

• Integrated EL grammar with JSP EBNF.

• Clarified doEndTag() description when SKIP_PAGE is returned.

• Added dynamic-attributes element in tag directive to describe a tag file that
accepts dynamic attributes.

• Added SimpleTag, JspFragment, DynamicAttributes, AttributeNotSupporte-
dException, ExpressionEvaluator, and VariableResolver classes to API. Add-
ed new API chapter for javax.servlet.jsp.el package.

• Added isScriptingEnabled directive and scripting-enabled JSP configuration el-
ement.

• Renamed jsp-group JSP configuration element to jsp-properties-group. Clari-
fied conflict resolution rules.

• Clarified direction with EL function - details still to come.

• Added a chapter for EL API.

• Added description of page-encoding JSP configuration element to Localiza-
tion chapter.

E.8.3 Between CD2a and CD2b

• Reordered "Users of JSP Technology" and "Basic Concepts" in the Overview
section.

• Added <jsp-config> element to web.xml as a parent element for <taglib>.
Added <jsp-group> as a new subelement to describe properties for a group of
JSP pages that are described using <url-pattern> and other elements. Current-
ly the only other element is <el-evaluation>, which can be used to describe
whether EL evaluation is active or not by default.

• Modified the default rules for EL evaluation. Now, EL evaluation is always
off, but it is very easy to add evaluation on through a <jsp-group> element.

• Various EBNF fixes

• Fixed some typos in Example Scenario in JSP_Fragments chapter

• Clarified issues on <jsp:forward> from within a tag file?

3-75

JavaServer Pages 2.0 Specification

• Clarified issues on <jsp:attribute> and whitespace

E.8.4 Changes between CD1 and CD2a

• Added a part structure to the specification description. This helps provide
guideance to the readers.

• Added a mechanism to pass attributes whose names are not known until runt-
ime to tag handlers (Dynamic Attributes).

• Added getPageContext() to SimpleTag.

• Adjustment to i18n table to make defaultInputEncoding the default output en-
coding if unspecified.

• Moved EBNF description from Fragments chapter to Core Syntax.

• Improved EBNF description of <jsp:attribute> and <jsp:body>. Also, easier
to read valid standard action attribute sets.

JSP.E.9Changes between JSP 2.0 ED1 and JSP 2.0 CD1

This is the first Community Draft of the JSP 2.0 specification.

E.9.5 JSP Fragments, .tag Files, and Simple Tag Handlers

• A new chapter on JSP fragments and supporting technologies such as the .tag
mechanism and simple tag handlers:

■ JSP fragments allow a portion of JSP code to be encapsulated into a Java ob-
ject which can be passed around and evaluated zero or more times.

■ The .tag mechanism allows page authors to use JSP syntax to write Custom
Actions.

■ Simple tag handlers integrates tightly with JSP fragments and allows for a
much easier and more natural invocation protocol for tag extensions.

E.9.6 Expression Language Added

• Added the Expression Language chapter, equivalent to that released in the JSP
Standard Tag Library (JSTL) Public Draft, Appendix A.

3-76

JavaServer Pages 2.0 Specification

• Updated the Expression Language chapter, including preliminary information
on the API to invoke the EL evaluator.

E.9.7 EBNF Fixes

Various fixes to the EBNF, to handle CustomAction translation errors correctly.
Improved readability by adding ATTR[] construct, to allow easier expression of
XML-style attributes that can appear in any order.

E.9.8 I18N Clarifications

Incorporated JSP 1.2 errata_a. Clarified when container can call setContent-

Type() and how it is possible to dynamically affect content type and character encod-
ing from within a page or custom action.

E.9.9 Other Changes

• Updated Status, Preface, Changes chapters.

• Made support for jsp:id mandatory.

• Various typographical fixes.

JSP.E.10Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1

This is the first expert draft of the JSP 2.0 specification.

E.10.10Typographical Fixes and Version Numbers

Various typographical fixes that do not change any specification requirements,
and version number updates for JSP 2.0. Various things were fixed from JSP 1.2
such as missing page numbers, repeated table numbers, etc.

E.10.11Added EBNF Grammar for JSP Standard Syntax

A new section was added to the Syntax Chapter that presents a simple EBNF
grammar for the standard (i.e. non-XML) JSP syntax. The grammar is intended to
provide a concise syntax overview and to resolve any syntax ambiguities present in
the specification.

3-77

JavaServer Pages 2.0 Specification

E.10.12Added Users of JavaServer Pages Section

A new section was added to the Overview Chapter that describes the various
classes of users that make use of JSP technology, describing their role, the technol-
ogy they’re familiar with, and the sections of this specifications that are relevant to
them.

E.10.13Added Placeholders for Expression Language and Custom Actions
Using JSP

Two new chapters were added in anticipation of the new Expression Language
and Custom Actions Using JSP features.

E.10.14Added Requirement for Debugging Support

A new section was added to the JSP Container Chapter requiring support for
JSR-045 ("Debugging Support for Other Languages"). The precompilation protocol
was also updated.

JSP.E.11Changes Between PFD 2 and Final Draft

This is the final version approved by JCP Executive Comittee; the document
was updated to reflect that status. All change bars were reset.

E.11.15Added jsp:id mechanism

A new mechanism was added to allow willing JSP containers to provide
improved translation-time error information from TagLibraryValidator classes. The
signature of TagLibraryValidator.validate() was modified slightly, and a new Valida-
tionMessage class was added. These objects act through a new attribute, jsp:id,
which is optionally supported by a JSP container and exposed only through the
XML view of a JSP page. Chapter JSP.10, Chapter JSP.7 (Section JSP.7.4.1.2) and
Chapter JSP.13 (Section JSP.13.9.6) were affected.

E.11.16Other Small Changes

• Made height & width be rtexprs. Section JSP.5.7 was affected.

• Added attribute value conversion from String literal to short and Short, and
corrected conversion for char and Character in Table JSP.1-11.

3-78

JavaServer Pages 2.0 Specification

• Corrected a statement on the allowed return values for doStartTag() for Tag,
IterationTag and BodyTag.. PFD2 incorrectly indicated that "emtpy" tags
could only return SKIP_BODY; the correct statement is that tags whose body-
content is "empty" can only return SKIP_BODY.

E.11.17Clarification of role of id

The mandated interpretations of the "id" attribute in Section JSP 2.13.3 (that id
represents page-wide unique ids) and the "scope" attribute in Section JSP 2.13.4
(regarding the scope for the introduced variable) were not enforced by most (per-
haps all?) containers, and were inconsistent with prevalent practices in custom tag
library development. Essentially these sections were being interpreted as localized
statements about the jsp:useBean standard action. This has been made explicit and
the sections were moved to Chapter 5 to reflect that.

Sections JSP.2.13.3 and JSP.2.13.4, and Chapter 4 were affected.

E.11.18Clarifications on Multiple Requests and Threading

• Clarify that TLV instances need be thread safe. This affected
Section JSP.13.9.6.

• Clarify that a tag handler instance is actively processing only one request at a
time; this happens naturally if the tag handler is instantiated afresh through
new() invocations, but it requires spelling once tag handler pooling is intro-
duced. This clarification affected Chapter JSP.13.

E.11.19Clarifications on JSP Documents

Several clarifications in Chapter JSP.6.

• Reafirmed that, in a JSP page in XML syntax, the URI for jsp core actions is
important, not the prefix.

• Clarify that <?xml ... ?> is not required (as indicated by the XML spec).

• Clarified further the interpretation of whitespace on JSP documents.

E.11.20Clarifications on Well Known Tag Libraries

Clarified that a tag library author may indicate, through the description
comment, that a tag handler may expose at runtime only some subset of the
information described through the tag handler implementation class. This is useful

3-79

JavaServer Pages 2.0 Specification

for specialized implementations of well-known tag libraries like the JSP standard
tag library. This clarification affected the description of the tag element in
Section JSP.7.3 and the description of Tag.setParent() and TagSupport.findAnces-

torWithClass().
Removed the last paragraph on Section JSP.7.3.9; we don’t have any plans to

remove the well-know URI mechanism.
In general cleaned up the presentation of the computation of the taglib map

between a URI and a TLD resource path; the previous version was clunky.

E.11.21Clarified Impact of Blocks

Clarified further the legal uses and the role of block constructs within scriptlets
and nested actions. This affected small portions of Sections JSP.1.3.3, JSP.9.4,
JSP.9.4.4 and JSP.13.9.10.

E.11.22Other Small Clarifications

• Reafirmed more explicitly that the location of icons is relative to TLD file.
Section JSP.7.3 was affected.

• Removed non-normative comment about JSR-045 in Section JSP.1.1.10.

• Removed the comment on errorPages needing to be JSP pages, they can also
be static objects. This affects Table JSP.1-8.

• Reaffirmed that event listeners in a tag library are registered before the appli-
cation is started. This affects Section JSP.7.1.9.

• Clarify when the use of quoting conventions is required for attribute values.
Clarified that request-time attribute values follow the same rules. This affects
Section JSP.1.3.5, Section JSP.1.6 and Section JSP.1.14.1.

• Clarified the interpretation of relative specifications for include directives and
jsp:include and jsp:forward actions. This affected Section JSP.1.2.1,
Section JSP.1.10.5, Section JSP.5.4 and Section JSP.5.5

• Corrected the inconsistency on the precompilation protocol in
Section JSP.11.4.2 regarding whether the requests are delivered to the page or
not; they are not.

• Clarified that the <type> subelement of <attribute> in the TLD file should
match that of the underlying JavaBean component property.

3-80

JavaServer Pages 2.0 Specification

• Spelled out the use of ClassLoader.getResource() to get at data from a TagLi-
braryValidator class.

JSP.E.12Changes Between 1.2 PFD 1b and PFD 2

Change bars are used in almost all chapters to indicate changes between PFD 1b
and PFD 2. The exception are Chapters 12 and 13 which are generated automati-
cally from the Java sources and have no change bars. Most changes are semantical,
but some of them are editorial.

E.12.23Added elements to Tag Library Descriptor

The Tag Library Descriptor (TLD) was extended with descriptive information
that is useful to users of the tag library. In particular, a TLD can now be massaged
directly (e.g. using an XSLT stylesheet) into an end-user document.

A new <example> element was added, as an optional subelement of <tag>.
The existing <description> element was made a valid optional subelement of
<variable>, <attribute> and <validator>.

Section JSP.7.3 and Appendix JSP.B were affected. The TLD 1.2 DTD and
Schemas were also affected.

E.12.24Changed the way version information is encoded into TLD

The mechanism used to provide version information on the TLD was changed.
In the PFD the version was encoded into the namespace. In PFD2 the namespace is
not intended to change unless there are non-compatible changes, and the version is
encoded into the <jsp-version> element, which is now mandatory. The new URI for
the namespace is "http://java.sun.com/JSP/TagLibraryDescriptor".

Chapter JSP.7 and Appendix JSP.B were affected.

E.12.25Assigning String literals to Object attributes

It is now possible to assign string literals to an attribute that is defined as having
type Object, as well as to a property of type Object. The valid type conversions are
now all described in Section JSP.1.14.2, and used by reference in the semantics of
<jsp:setProperty>.

3-81

JavaServer Pages 2.0 Specification

E.12.26Clarification on valid names for prefix, action and attributes

We clarified the valid names for prefixes used in taglib directives, element
names used in actions, and attribute names.

E.12.27Clarification of details of empty actions

The JSP 1.1 specification distinguishes empty from non-empty actions,
although the description could be better. Unfortunately, the JSP 1.2 PFD1 draft did
not improve the description. This draft improves the description by making it clear
what methods are invoked when.

Chapters 1, 7 and 13 were affected.

E.12.28Corrections related to XML syntax

We clarified several issues related to the XML syntax for JSP pages and to the
XML view of a JSP page. Most changes are in Chapter JSP.6.

• Removed an inexistant flush attribute in the include directive at Chapter JSP.6.

• Changed the name of jsp:cdata to jsp:text, since its semantics are very similar
to the text element in XSLT.

• Changed the way the version information is encoded into the XML syntax;
the URI used now is not version-specific and instead there is a required ver-
sion attribute of jsp:root.

• Clarified that JSP comments in a JSP page in JSP syntax are not preserved on
the XML view of the page.

• Clarified that JSP pages in XML syntax should have no DOCTYPE.

• Clarified the treatment of include directives in the XML view of a JSP page.

• Clarified the format of the URIs to use in xmlns attributes for taglib directives,
and corrected Appendix JSP.B.

E.12.29Other changes

We clarified several other inconsistencies or mistakes

3-82

JavaServer Pages 2.0 Specification

• Explicitly indicated which attributes are reserved (Section JSP.1.3.5) and
which prefixes are reserved (Section JSP.1.10.2).

• Add a comment to the DTD for the TLD indicating that a DOCTYPE is needed
and what its value is. No changes to the value.

• Removed the paragraph at the end of Section JSP.7.3.9 that used to contain
non-normative comments on the future of "well kwown URIs".

• Corrected the description of the valid values that can be passed to the flush at-
tribute of the include action in Section JSP.5.4.

• Clarified that <jsp:param> can only appear within <jsp:forward>, <jsp:in-
clude>, and <jsp:params>.

• Clarified that <jsp:params> and <jsp:fallback> can only appear within
<jsp:plugin>.

• Resolved a conflict in Section JSP.5.4 between the Servlet and the JSP specifi-
cation regarding how to treat modifications to headers in included actions.

• Section 10.1.1 in PFD1 incorrectly described the valid return values for
doStartTag() in tag handlers that implement the BodyTag interface. The cor-
rect valid values are SKIP_BODY, EVAL_BODY_INCLUDE and
EVAL_BODY_BUFFER. Section now indicates this.

JSP.E.13Changes Between 1.2 PFD and 1.2 PFD 1b

PFD 1b is a draft that has mostly formating and a few editorial changes. This
draft is shown only to make it simpler to correlate changes between later drafts and
the previous drafts.

Change bars are used to indicate changes between PFD 1 and PFD 1b.

JSP.E.14Changes Between 1.2 PD1 and 1.2 PFD

The following changes ocurred between the Public Draft 1 and the Proposed
Final Draft versions of the JSP 1.2 specification.

3-83

JavaServer Pages 2.0 Specification

E.14.30Deletions

• Removed the resetCustomAttributes() method.

E.14.31Additions

• Added constructors and methods to JspException to support a rootCause (par-
alleling the ServletException).

• Added a PageContext.handleException(Throwable) method.

• Added references to JSR-045 regarding debugging support.

• Added new TryCatchFinally interface to provide better control over excep-
tions in tag handlers.

• Added an implicit URI to TLD map for packaged tag libraries. This also pro-
vides support for multiple TLDs inside a single JAR file.

• Added pageEncoding attribute to page directive.

• Added material to Chapter JSP.4.

• Added TagValidatorInfo class.

• Added Section JSP.1.1.9 with a suggestion on extension convention for top
and included JSP files.

E.14.32Clarifications

• A tag handler object can be created with a simple “new()”; it needs not be a
fully fledged Beans, supporting the complete behavior of the ja-
va.beans.Beans.instantiate() method.

• Removed the “recommendation” that the <uri> element in a TLD be a URL to
anything.

• Clarified that extension dependency information in packaged tag libraries
should be honored.

• Clarified invocation and lifecycle of TagLibraryValidator.

• Clarified where TLDs may appear in a packaged JAR file.

• Clarified when are response.getWriter().

3-84

JavaServer Pages 2.0 Specification

E.14.33Changes

• Moved a couple of chapters around

• Improved and clarified Chapter JSP.6.

• Moved the include directive back into Chapter JSP.1.

• Renamed javax.servlet.jsp.tagext.PageInfo to javax.servlet.jsp.tagext.PageDa-
ta (for consistency with existing TagData).

• Added initialization parameters to TagLibraryInformation validation in TLD,
adding a new <validator> element, renaming <validatorclass> to <validator-
class> for consistency, and adding <init-param> as in the Servlet web.xml de-
scriptor.

• Added method to pass the initialization parameters to the validator class and
removed the use of TagLibraryInfo. Added prefix and uri String arguments to
validate() method.

• Changed element names in TLD to consistently follow convention. New
names are <tag-class>. <tei-class>, <tlib-version, <jsp-version>, <short-
name> and <body-content>. <info> was renamed <description>.

JSP.E.15Changes Between 1.1 and 1.2 PD1

The following changes ocurred between the JSP 1.1 and JSP 1.2 Public Draft 1.

E.15.34Organizational Changes

• Chapter 8 and 10 are now generated automatically from the javadoc sources.

• Created a new document to allow longer descriptions of uses of the technolo-
gy.

• Created a new I18N chapter to capture Servlet 2.3 implications and others
(mostly empty for PD1).

• Removed Implementation Notes and Future appendices, as they have not been
updated yet.

3-85

JavaServer Pages 2.0 Specification

E.15.35New Document

We created a new, non-normative document, “Using JSP Technology”. The
document is still being updated to JSP 1.2 and Servlet 2.3. We moved to this docu-
ment the following:

• Some of the non-normative Overview material.

• All of the appendix on tag library examples.

• Some of the material on the Tag Extensions chapter.

E.15.36Additions to API

• jsp:include can now indicate “flush=’false’”.

• Made the XML view of a JSP page available for input, and for validation.

• PropertyEditor.setAsText() can now be used to convert from a literal string at-
tribute value.

• New ValidatorClass and JspPage classes for validation against tag libraries.

• New IteratorTag interface to support iteration without BodyContent. Added
two new constants (EVAL_BODY_BUFFERED and EVAL_BODY_AGAIN)
to help document better how the tag protocol works; they are carefully de-
signed so that old tag handlers will still work unchanged, but the old name for
the constant EVAL_BODY_TAG is now deprecated.

• Added listener classes to the TLD.

• Added elements to the TLD to avoid having to write TagExtraInfo classes in
the most common cases.

• Added a resetCustomAttributes() method to Tag interface.

• Added elements to the TLD for delivering icons and descriptions to use in au-
thoring tools.

3-86

JavaServer Pages 2.0 Specification

E.15.37Clarifications

• Incorporated errata 1.1_a and (in progress) 1.1_b.

E.15.38Changes

• JSP 1.2 is based on Servlet 2.3, in particular:

• JSP 1.2 is based on the Java 2 platform.

JSP.E.16Changes Between 1.0 and 1.1

The JSP 1.1 specification builds on the JSP 1.0 specification. The following
changes ocurred between the JSP 1.0 final specification and the JSP 1.1 final specifi-
cation.

E.16.39Additions

• Added a portable tag extension mechanism with an XML-based Tag Library
Descriptor, and a run-time stack of tag handlers. Tag handers are based on the
JavaBeans component model. Adjusted the semantics of the uri attribute in
taglib directives.

• Flush is now a mandatory attribute of jsp:include, and the only valid value is
“true”.

• Added parameters to jsp:include and jsp:forward.

• Enabled the compilation of JSP pages into Servlet classes that can be trans-
ported from one JSP container to another. Added appendix with an example
of this.

• Added a precompilation protocol.

• Added pushBody() and popBody() to PageContext.

• Added JspException and JspTagException classes.

• Consistent use of the JSP page, JSP container, and similar terms.

• Added a Glossary as Appendix JSP.F.

• Expanded Chapter 1 so as to cover 0.92’s "model 1" and "model 2".

• Clarified a number of JSP 1.0 details.

3-87

JavaServer Pages 2.0 Specification

E.16.40Changes

• Use Servlet 2.2 instead of Servlet 2.1 (as clarified in Appendix B), including
distributable JSP pages.

• jsp:plugin no longer can be implemented by just sending the contents of
jsp:fallback to the client.

• Reserved all request parameters starting with "jsp".

3-88

JavaServer Pages 2.0 Specification

3-89JavaServer Pages 2.0 Specification

A P P E N D I X JSP.F
Glossary

This appendix is a glossary of the main concepts mentioned in this specifica-
tion. This appendix is non-normative.

action An element in a JSP page that can act on implicit objects and other
server-side objects or can define new scripting variables. Actions follow the
XML syntax for elements with a start tag, a body and an end tag; if the body is
empty it can also use the empty tag syntax. The tag must use a prefix.

action, standard An action that is defined in the JSP specification and is always
available to a JSP file without being imported.

action, custom An action described in a portable manner by a tag library descrip-
tor and a collection of Java classes and imported into a JSP page by a taglib
directive.

Application Assembler A person that combines JSP pages, servlet classes,
HTML content, tag libraries, and other Web content into a deployable Web
application.

classic tag handler A tag handler that implements the javax.servlet.jsp.tagext.Tag

interface.

component contract The contract between a component and its container,
including life cycle management of the component and the APIs and proto-
cols that the container must support.

Component Provider A vendor that provides a component either as Java classes
or as JSP page source.

3-90

JavaServer Pages 2.0 Specification

distributed container A JSP container that can run a Web application that is
tagged as distributable and is spread across multiple Java virtual machines
that might be running on different hosts.

declaration A scripting element that declares methods, variables, or both in a
JSP page. Syntactically it is delimited by the <%! and %> characters.

directive An element in a JSP page that gives an instruction to the JSP container
and is interpreted at translation time. Syntactically it is delimited by the <%@

and %> characters.

dynamic attribute An attribute, passed to a custom action, whose name is not
explicitly declared in the tag library descriptor.

element A portion of a JSP page that is recognized by the JSP translator. An ele-
ment can be a directive, an action, or a scripting element.

EL expression An element in a JSP page representing an expression to be parsed
and evaluated via the JSP Expression Language. Syntactically it is delimited
by the ${ and } characters.

expression Either a scripting expression or an EL expression.

fixed template data Any portions of a JSP file that are not described in the JSP
specification, such as HTML tags, XML tags, and text. The template data is
returned to the client in the response or is processed by a component.

implicit object A server-side object that is defined by the JSP container and is
always available in a JSP file without being declared. The implicit objects are
request, response, pageContext, session, application, out, config, page, and
exception for scriptlets and scripting expressions. The implicit objects are
pageContext, pageScope, requestScope, sessionScope, applicationScope,
param, paramValues, header, headerValues, cookie and initParam for EL
expressions.

JavaServer Pages technology An extensible Web technology that uses template
data, custom elements, scripting languages, and server-side Java objects to
return dynamic content to a client. Typically the template data is HTML or
XML elements, and in many cases the client is a Web browser.

JSP container A system-level entity that provides life cycle management and
runtime support for JSP and servlet components.

JSP configuration The deployment-time process by which the JSP container is
declaratively configured using a deployment descriptor.

3-91

JavaServer Pages 2.0 Specification

JSP file A text file that contains JSP elements, forming a complete JSP page or
just a partial page that must be combined with other JSP files to form a com-
plete page. Most top-level JSP files have a .jsp extension, but other extensions
can be configured as well.

JSP fragment A portion of JSP code, translated into an implementation of the
javax.servlet.jsp.JspFragment abstract class.

JSP page One or more JSP files that form a syntactically complete description
for processing a request to create a response.

JSP page, frontA JSP page that receives an HTTP request directly from the cli-
ent. It creates, updates, and/or accesses some server-side data and then for-
wards the request to a presentation JSP page.

JSP page, presentation A JSP page that is intended for presentation purposes
only. It accesses and/or updates some server-side data and incorporates fixed
template data to create content that is sent to the client.

JSP page implementation class The Java programming language class, a servlet,
that is the runtime representation of a JSP page and which receives the request
object and updates the response object. The page implementation class can
use the services provided by the JSP container, including both the servlet and
the JSP APIs.

JSP page implementation object The instance of the JSP page implementation
class that receives the request object and updates the response object.

JSP segment A portion of JSP code defined in a separate file, and imported into
a page using the include directive.

named attribute A standard or custom action attribute whose value is defined
using the <jsp:attribute> standard action.

scripting element A declaration, scriptlet, or expression, whose tag syntax is
defined by the JSP specification, and whose content is written according to the
scripting language used in the JSP page. The JSP specification describes the
syntax and semantics for the case where the language page attribute is java.

scripting expression A scripting element that contains a valid scripting lan-
guage expression that is evaluated, converted to a String, and placed into the
implicit out object. Syntactically it is delimited by the <%= and %> characters.

scriptlet An scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes what

3-92

JavaServer Pages 2.0 Specification

is a valid scriptlet for the case where the language page attribute is java. Syn-
tactically a scriptlet is delimited by the <% and %> characters.

simple tag handler A tag handler that implements the javax.serv-

let.jsp.tagext.SimpleTag interface.

tag A piece of text between a left angle bracket and a right angle bracket that has
a name, can have attributes, and is part of an element in a JSP page. Tag
names are known to the JSP translator, either because the name is part of the
JSP specification (in the case of a standard action), or because it has been
introduced using a Tag Library (in the case of custom action).

tag file A text-based document that uses fixed template data and JSP elements to
define a custom action. The semantics of a tag file are realized at runtime by a
tag handler.

tag handler A Java class that implements the JspTag interface and is the run-
time representation of a custom action.

tag library A collection of custom actions described by a tag library descriptor
and Java classes.

tag library descriptor An XML document describing a tag library.

Tag Library Provider A vendor that provides a tag library. Typical examples
may be a JSP container vendor, a development group within a corporation, a
component vendor, or a service vendor that wants to provide easier use of
their services.

web application An application built for the Internet, an intranet, or an extranet.

web application, distributable A Web application that is written so that it can be
deployed in a Web container distributed across multiple Java virtual machines
running on the same host or different hosts. The deployment descriptor for
such an application uses the distributable element.

Web Application Deployer A person who deploys a Web application in a Web
container, specifying at least the root prefix for the Web application, and in a
J2EE environment, the security and resource mappings.

web component A servlet class or JSP page that runs in a JSP container and pro-
vides services in response to requests.

Web Container Provider A vendor that provides a servlet and JSP container that
support the corresponding component contracts.

3-93

JavaServer Pages 2.0 Specification

3-94

JavaServer Pages 2.0 Specification

	Contents
	JSP.1 Core Syntax and Semantics 1-3
	JSP.2 Expression Language 1-63
	JSP.3 JSP Configuration 1-85
	JSP.4 Internationalization Issues 1-93
	JSP.5 Standard Actions 1-99
	JSP.6 JSP Documents 1-131
	JSP.7 Tag Extensions 1-149
	JSP.8 Tag Files 1-173
	JSP.9 Scripting 1-195
	JSP.10 XML View 1-201
	JSP.11 JSP Container 2-3
	JSP.12 Core API 2-17
	JSP.13 Tag Extension API 2-49
	JSP.14 Expression Language API 2-127
	JSP.A Packaging JSP Pages 3-3
	JSP.B JSP Elements of web.xml 3-7
	JSP.C Tag Library Descriptor Formats 3-15
	JSP.D Page Encoding Detection 3-57
	JSP.E Changes 3-61
	JSP.F Glossary 3-89

	Preface
	Status
	Overview
	The JavaServer Pages™ Technology
	Basic Concepts
	Users of JavaServer Pages

	Part I
	Core Syntax and Semantics
	JSP.1.1 What Is a JSP Page
	JSP.1.1.1 Web Containers and Web Components
	JSP.1.1.2 Generating HTML
	JSP.1.1.3 Generating XML
	JSP.1.1.4 Translation and Execution Phases
	JSP.1.1.5 Validating JSP pages
	JSP.1.1.6 Events in JSP Pages
	JSP.1.1.7 JSP Configuration Information
	JSP.1.1.8 Naming Conventions for JSP Files
	JSP.1.1.9 Compiling JSP Pages
	JSP.1.1.10 Debugging JSP Pages

	JSP.1.2 Web Applications
	JSP.1.2.1 Relative URL Specifications

	JSP.1.3 Syntactic Elements of a JSP Page
	JSP.1.3.1 Elements and Template Data
	JSP.1.3.2 Element Syntax
	JSP.1.3.3 Start and End Tags
	JSP.1.3.4 Empty Elements
	JSP.1.3.5 Attribute Values
	JSP.1.3.6 The jsp:attribute, jsp:body and jsp:element Elements
	JSP.1.3.7 Valid Names for Actions and Attributes
	JSP.1.3.8 White Space
	JSP.1.3.9 JSP Documents
	JSP.1.3.10 JSP Syntax Grammar

	JSP.1.4 Error Handling
	JSP.1.4.1 Translation Time Processing Errors
	JSP.1.4.2 Request Time Processing Errors
	JSP.1.4.3 Using JSPs as Error Pages

	JSP.1.5 Comments
	JSP.1.5.1 Generating Comments in Output to Client
	JSP.1.5.2 JSP Comments

	JSP.1.6 Quoting and Escape Conventions
	JSP.1.7 Overall Semantics of a JSP Page
	JSP.1.8 Objects
	JSP.1.8.1 Objects and Variables
	JSP.1.8.2 Objects and Scopes
	JSP.1.8.3 Implicit Objects
	JSP.1.8.4 The pageContext Object

	JSP.1.9 Template Text Semantics
	JSP.1.10 Directives
	JSP.1.10.1 The page Directive
	JSP.1.10.2 The taglib Directive
	JSP.1.10.3 The include Directive
	JSP.1.10.4 Implicit Includes
	JSP.1.10.5 Including Data in JSP Pages
	JSP.1.10.6 Additional Directives for Tag Files

	JSP.1.11 EL Elements
	JSP.1.12 Scripting Elements
	JSP.1.12.1 Declarations
	JSP.1.12.2 Scriptlets
	JSP.1.12.3 Expressions

	JSP.1.13 Actions
	JSP.1.14 Tag Attribute Interpretation Semantics
	JSP.1.14.1 Request Time Attribute Values
	JSP.1.14.2 Type Conversions

	Expression Language
	JSP.2.1 Overview
	JSP.2.2 The Expression Language in JSP 2.0
	JSP.2.2.1 Expressions and Attribute Values
	JSP.2.2.2 Expressions and Template Text
	JSP.2.2.3 Implicit Objects
	JSP.2.2.4 Deactivating EL Evaluation
	JSP.2.2.5 Disabling Scripting Elements

	JSP.2.3 General Syntax of the Expression Language
	JSP.2.3.1 Overview
	JSP.2.3.2 Literals
	JSP.2.3.3 Errors, Warnings, Default Values
	JSP.2.3.4 Operators "[]" and "."
	JSP.2.3.5 Arithmetic Operators
	JSP.2.3.6 Logical Operators
	JSP.2.3.7 Empty Operator - empty A
	JSP.2.3.8 Conditional Operator - A ? B : C
	JSP.2.3.9 Parentheses
	JSP.2.3.10 Operator Precedence

	JSP.2.4 Reserved Words
	JSP.2.5 Named Variables
	JSP.2.6 Functions
	JSP.2.6.1 Invocation Syntax
	JSP.2.6.2 Tag Library Descriptor Information
	JSP.2.6.3 Example
	JSP.2.6.4 Semantics

	JSP.2.7 Implicit Objects
	JSP.2.8 Type Conversion
	JSP.2.8.1 To Coerce a Value X to Type Y
	JSP.2.8.2 Coerce A to String
	JSP.2.8.3 Coerce A to Number type N
	JSP.2.8.4 Coerce A to Character
	JSP.2.8.5 Coerce A to Boolean
	JSP.2.8.6 Coerce A to Any Other Type T

	JSP.2.9 Collected Syntax

	JSP Configuration
	JSP.3.1 JSP Configuration Information in web.xml
	JSP.3.2 Taglib Map
	JSP.3.3 JSP Property Groups
	JSP.3.3.1 JSP Property Groups
	JSP.3.3.2 Deactivating EL Evaluation
	JSP.3.3.3 Disabling Scripting Elements
	JSP.3.3.4 Declaring Page Encodings
	JSP.3.3.5 Defining Implicit Includes
	JSP.3.3.6 Denoting XML Documents

	Internationalization Issues
	JSP.4.1 Page Character Encoding
	JSP.4.2 Response Character Encoding
	JSP.4.3 Request Character Encoding
	JSP.4.4 XML View Character Encoding
	JSP.4.5 Delivering Localized Content

	Standard Actions
	JSP.5.1 <jsp:useBean>
	JSP.5.2 <jsp:setProperty>
	JSP.5.3 <jsp:getProperty>
	JSP.5.4 <jsp:include>
	JSP.5.5 <jsp:forward>
	JSP.5.6 <jsp:param>
	JSP.5.7 <jsp:plugin>
	JSP.5.8 <jsp:params>
	JSP.5.9 <jsp:fallback>
	JSP.5.10 <jsp:attribute>
	JSP.5.11 <jsp:body>
	JSP.5.12 <jsp:invoke>
	JSP.5.12.1 Basic Usage
	JSP.5.12.2 Storing Fragment Output
	JSP.5.12.3 Providing a Fragment Access to Variables

	JSP.5.13 <jsp:doBody>
	JSP.5.14 <jsp:element>
	JSP.5.15 <jsp:text>
	JSP.5.16 <jsp:output>
	JSP.5.17 Other Standard Actions

	JSP Documents
	JSP.6.1 Overview of JSP Documents and of XML Views
	JSP.6.2 JSP Documents
	JSP.6.2.1 Identifying JSP Documents
	JSP.6.2.2 Overview of Syntax of JSP Documents
	JSP.6.2.3 Semantic Model
	JSP.6.2.4 JSP Document Validation

	JSP.6.3 Syntactic Elements in JSP Documents
	JSP.6.3.1 Namespaces, Standard Actions, and Tag Libraries
	JSP.6.3.2 The jsp:root Element
	JSP.6.3.3 The jsp:output Element
	JSP.6.3.4 The jsp:directive.page Element
	JSP.6.3.5 The jsp:directive.include Element
	JSP.6.3.6 Additional Directive Elements in Tag Files
	JSP.6.3.7 Scripting Elements
	JSP.6.3.8 Other Standard Actions
	JSP.6.3.9 Template Content
	JSP.6.3.10 Dynamic Template Content

	JSP.6.4 Examples of JSP Documents
	JSP.6.4.1 Example: A simple JSP document
	JSP.6.4.2 Example: Generating Namespace-aware documents
	JSP.6.4.3 Example: Generating non-XML documents
	JSP.6.4.4 Example: Using Custom Actions and Tag Files

	JSP.6.5 Possible Future Directions for JSP documents
	JSP.6.5.1 Generating XML Content Natively
	JSP.6.5.2 Schema and XInclude Support

	Tag Extensions
	JSP.7.1 Introduction
	JSP.7.1.1 Goals
	JSP.7.1.2 Overview
	JSP.7.1.3 Classic Tag Handlers
	JSP.7.1.4 Simple Examples of Classic Tag Handlers
	JSP.7.1.5 Simple Tag Handlers
	JSP.7.1.6 JSP Fragments
	JSP.7.1.7 Simple Examples of Simple Tag Handlers
	JSP.7.1.8 Attributes With Dynamic Names
	JSP.7.1.9 Event Listeners

	JSP.7.2 Tag Libraries
	JSP.7.2.1 Packaged Tag Libraries
	JSP.7.2.2 Location of Java Classes
	JSP.7.2.3 Tag Library directive

	JSP.7.3 The Tag Library Descriptor
	JSP.7.3.1 Identifying Tag Library Descriptors
	JSP.7.3.2 TLD resource path
	JSP.7.3.3 Taglib Map in web.xml
	JSP.7.3.4 Implicit Map Entries from TLDs
	JSP.7.3.5 Implicit Map Entries from the Container
	JSP.7.3.6 Determining the TLD Resource Path
	JSP.7.3.7 Translation-Time Class Loader
	JSP.7.3.8 Assembling a Web Application
	JSP.7.3.9 Well-Known URIs
	JSP.7.3.10 Tag and Tag Library Extension Elements

	JSP.7.4 Validation
	JSP.7.4.1 Translation-Time Mechanisms
	JSP.7.4.2 Request-Time Errors

	JSP.7.5 Conventions and Other Issues
	JSP.7.5.1 How to Define New Implicit Objects
	JSP.7.5.2 Access to Vendor-Specific information
	JSP.7.5.3 Customizing a Tag Library

	Tag Files
	JSP.8.1 Overview
	JSP.8.2 Syntax of Tag Files
	JSP.8.3 Semantics of Tag Files
	JSP.8.4 Packaging Tag Files
	JSP.8.4.1 Location of Tag Files
	JSP.8.4.2 Packaging in a JAR
	JSP.8.4.3 Packaging Directly in a Web Application
	JSP.8.4.4 Packaging as Precompiled Tag Handlers

	JSP.8.5 Tag File Directives
	JSP.8.5.1 The tag Directive
	JSP.8.5.2 The attribute Directive
	JSP.8.5.3 The variable Directive

	JSP.8.6 Tag Files in XML Syntax
	JSP.8.7 XML View of a Tag File
	JSP.8.8 Implicit Objects
	JSP.8.9 Variable Synchronization
	JSP.8.9.1 Synchronization Points
	JSP.8.9.2 Synchronization Examples

	Scripting
	JSP.9.1 Overall Structure
	JSP.9.1.1 Valid JSP Page
	JSP.9.1.2 Reserved Names
	JSP.9.1.3 Implementation Flexibility

	JSP.9.2 Declarations Section
	JSP.9.3 Initialization Section
	JSP.9.4 Main Section
	JSP.9.4.1 Template Data
	JSP.9.4.2 Scriptlets
	JSP.9.4.3 Expressions
	JSP.9.4.4 Actions

	XML View
	JSP.10.1 XML View of a JSP Document, JSP Page or Tag File
	JSP.10.1.1 JSP Documents and Tag Files in XML Syntax
	JSP.10.1.2 JSP Pages or Tag Files in JSP Syntax
	JSP.10.1.3 JSP Comments
	JSP.10.1.4 The page Directive
	JSP.10.1.5 The taglib Directive
	JSP.10.1.6 The include Directive
	JSP.10.1.7 Declarations
	JSP.10.1.8 Scriptlets
	JSP.10.1.9 Expressions
	JSP.10.1.10 Standard and Custom Actions
	JSP.10.1.11 Request-Time Attribute Expressions
	JSP.10.1.12 Template Text and XML Elements
	JSP.10.1.13 The jsp:id Attribute
	JSP.10.1.14 The tag Directive
	JSP.10.1.15 The attribute Directive
	JSP.10.1.16 The variable Directive

	JSP.10.2 Validating an XML View of a JSP page
	JSP.10.3 Examples
	JSP.10.3.1 A JSP document
	JSP.10.3.2 A JSP page and its corresponding XML View
	JSP.10.3.3 Clearing Out Default Namespace on Include
	JSP.10.3.4 Taglib Direcive Adds to Global Namespace
	JSP.10.3.5 Collective Application of Inclusion Semantics

	Part II
	JSP Container
	JSP.11.1 JSP Page Model
	JSP.11.1.1 Protocol Seen by the Web Server

	JSP.11.2 JSP Page Implementation Class
	JSP.11.2.1 API Contracts
	JSP.11.2.2 Request and Response Parameters
	JSP.11.2.3 Omitting the extends Attribute
	JSP.11.2.4 Using the extends Attribute

	JSP.11.3 Buffering
	JSP.11.4 Precompilation
	JSP.11.4.1 Request Parameter Names
	JSP.11.4.2 Precompilation Protocol

	JSP.11.5 Debugging Requirements
	JSP.11.5.1 Line Number Mapping Guidelines

	Core API
	JSP.12.1 JSP Page Implementation Object Contract
	JSP.12.1.1 JspPage
	JSP.12.1.2 HttpJspPage
	JSP.12.1.3 JspFactory
	JSP.12.1.4 JspEngineInfo

	JSP.12.2 Implicit Objects
	JSP.12.2.1 JspContext
	JSP.12.2.2 PageContext
	JSP.12.2.3 JspWriter
	JSP.12.2.4 ErrorData

	JSP.12.3 An Implementation Example
	JSP.12.4 Exceptions
	JSP.12.4.1 JspException
	JSP.12.4.2 JspTagException
	JSP.12.4.3 SkipPageException

	Tag Extension API
	JSP.13.1 Classic Tag Handlers
	JSP.13.1.1 JspTag
	JSP.13.1.2 Tag
	JSP.13.1.3 IterationTag
	JSP.13.1.4 TryCatchFinally
	JSP.13.1.5 TagSupport

	JSP.13.2 Tag Handlers that want Access to their Body Content
	JSP.13.2.1 BodyContent
	JSP.13.2.2 BodyTag
	JSP.13.2.3 BodyTagSupport

	JSP.13.3 Dynamic Attributes
	JSP.13.3.1 DynamicAttributes

	JSP.13.4 Annotated Tag Handler Management Example
	JSP.13.5 Cooperating Actions
	JSP.13.6 Simple Tag Handlers
	JSP.13.6.1 SimpleTag
	JSP.13.6.2 SimpleTagSupport
	JSP.13.6.3 TagAdapter

	JSP.13.7 JSP Fragments
	JSP.13.7.1 JspFragment

	JSP.13.8 Example Simple Tag Handler Scenario
	JSP.13.9 Translation-time Classes
	JSP.13.9.1 TagLibraryInfo
	JSP.13.9.2 TagInfo
	JSP.13.9.3 TagFileInfo
	JSP.13.9.4 TagAttributeInfo
	JSP.13.9.5 PageData
	JSP.13.9.6 TagLibraryValidator
	JSP.13.9.7 ValidationMessage
	JSP.13.9.8 TagExtraInfo
	JSP.13.9.9 TagData
	JSP.13.9.10 VariableInfo
	JSP.13.9.11 TagVariableInfo
	JSP.13.9.12 FunctionInfo

	Expression Language API
	JSP.14.1 Expression Evaluator
	JSP.14.1.1 ExpressionEvaluator
	JSP.14.1.2 Expression
	JSP.14.1.3 VariableResolver
	JSP.14.1.4 FunctionMapper

	JSP.14.2 Exceptions
	JSP.14.2.1 ELException
	JSP.14.2.2 ELParseException

	JSP.14.3 Code Fragment

	Part III
	Packaging JSP Pages
	JSP.A.1 A Very Simple JSP Page
	JSP.A.2 The JSP Page Packaged as Source in a WAR File
	JSP.A.3 The Servlet for the Compiled JSP Page
	JSP.A.4 The Web Application Descriptor
	JSP.A.5 The WAR for the Compiled JSP Page

	JSP Elements of web.xml
	JSP.B.1 XML Schema for JSP 2.0 Deployment Descriptor

	Tag Library Descriptor Formats
	JSP.C.1 XML Schema for TLD, JSP 2.0
	JSP.C.2 DTD for TLD, JSP 1.2
	JSP.C.3 DTD for TLD, JSP 1.1

	Page Encoding Detection
	JSP.D.1 Detection Algorithm

	Changes
	JSP.E.1 Changes between JSP 2.0 PFD3 and JSP 2.0 Final
	JSP.E.2 Changes between JSP 2.0 PFD2 and JSP 2.0 PFD3
	JSP.E.3 Changes between JSP 2.0 PFD and JSP 2.0 PFD2
	JSP.E.4 Changes between JSP 2.0 PFD1a and JSP 2.0 PFD
	JSP.E.5 Changes between JSP 2.0 PD2 and JSP 2.0 PFD1a
	JSP.E.6 Changes between JSP 2.0 PD1 and JSP 2.0 PD2
	JSP.E.7 Changes between JSP 2.0 CD2 and JSP 2.0 PD1
	JSP.E.8 Changes between JSP 2.0 CD1 and JSP 2.0 CD2
	E.8.1 Between CD2c and CD2
	E.8.2 Between CD2b and CD2c
	E.8.3 Between CD2a and CD2b
	E.8.4 Changes between CD1 and CD2a

	JSP.E.9 Changes between JSP 2.0 ED1 and JSP 2.0 CD1
	E.9.5 JSP Fragments, .tag Files, and Simple Tag Handlers
	E.9.6 Expression Language Added
	E.9.7 EBNF Fixes
	E.9.8 I18N Clarifications
	E.9.9 Other Changes

	JSP.E.10 Changes Between JSP 1.2 Final Draft and JSP 2.0 ED1
	E.10.10 Typographical Fixes and Version Numbers
	E.10.11 Added EBNF Grammar for JSP Standard Syntax
	E.10.12 Added Users of JavaServer Pages Section
	E.10.13 Added Placeholders for Expression Language and Custom Actions Using JSP
	E.10.14 Added Requirement for Debugging Support

	JSP.E.11 Changes Between PFD 2 and Final Draft
	E.11.15 Added jsp:id mechanism
	E.11.16 Other Small Changes
	E.11.17 Clarification of role of id
	E.11.18 Clarifications on Multiple Requests and Threading
	E.11.19 Clarifications on JSP Documents
	E.11.20 Clarifications on Well Known Tag Libraries
	E.11.21 Clarified Impact of Blocks
	E.11.22 Other Small Clarifications

	JSP.E.12 Changes Between 1.2 PFD 1b and PFD 2
	E.12.23 Added elements to Tag Library Descriptor
	E.12.24 Changed the way version information is encoded into TLD
	E.12.25 Assigning String literals to Object attributes
	E.12.26 Clarification on valid names for prefix, action and attributes
	E.12.27 Clarification of details of empty actions
	E.12.28 Corrections related to XML syntax
	E.12.29 Other changes

	JSP.E.13 Changes Between 1.2 PFD and 1.2 PFD 1b
	JSP.E.14 Changes Between 1.2 PD1 and 1.2 PFD
	E.14.30 Deletions
	E.14.31 Additions
	E.14.32 Clarifications
	E.14.33 Changes

	JSP.E.15 Changes Between 1.1 and 1.2 PD1
	E.15.34 Organizational Changes
	E.15.35 New Document
	E.15.36 Additions to API
	E.15.37 Clarifications
	E.15.38 Changes

	JSP.E.16 Changes Between 1.0 and 1.1
	E.16.39 Additions
	E.16.40 Changes

	Glossary

