
11
GUI Components:
Part 1

O B J E C T I V E S
In this chapter you will learn:

■ The design principles of graphical user interfaces (GUIs).

■ To build GUIs and handle events generated by user
interactions with GUIs.

■ To understand the packages containing GUI
components, event-handling classes and interfaces.

■ To create and manipulate buttons, labels, lists, text fields
and panels.

■ To handle mouse events and keyboard events.

■ To use layout managers to arrange GUI components

Do you think I can listen all
day to such stuff?
—Lewis Carroll

Even a minor event in the
life of a child is an event of
that child’s world and thus a
world event.
—Gaston Bachelard

You pays your money and
you takes your choice.
—Punch

Guess if you can, choose if
you dare.
—Pierre Corneille

Chapter 11 GUI Components: Part 1 3

Name: Date:

Section:

Assignment Checklist

Exercises Assigned: Circle assignments Date Due

Prelab Activities

Matching YES NO

Fill in the Blank 19, 20, 21, 22, 23, 24, 25, 26, 27,
28

Short Answer 29, 30, 31, 32, 33, 34

Programming Output 35, 36, 37, 38, 39

Correct the Code 40, 41, 42

Lab Exercises

Exercise 1 — Guess Game YES NO

Follow-Up Questions and Activities 1, 2

Exercise 2 — Events YES NO

Debugging YES NO

Labs Provided by Instructor

1.

 2.

 3.

PostLab Activities

Coding Exercises 1, 2, 3, 4

Programming Challenges 1, 2

Chapter 11 GUI Components: Part 1 5

Prelab Activities

Name: Date:

Section:

Matching

After reading Chapter 11 of Java How to Program: Sixth Edition, answer the given questions. The questions are
intended to reinforce your understanding of key concepts. You may answer the questions before or during the
lab.

For each term in the left column, write the letter for the description from the right column that best matches the
term.

Term Description

1. ImageIcon

2. ItemListener

3. JLabel

4. KeyEvent

5. JList

6. KeyListener

7. JRadioButton

8. ActionEvent

9. JScrollPane

10. AbstractButton

11. interface SwingConstants

12. JComponent

13. SINGLE_INTERVAL_SELECTION

14. JPasswordField

15. GridLayout

16. MULTIPLE_INTERVAL_SELECTION

17. BorderLayout

18. FlowLayout

a) A single-line area in which text can be entered by the user,
but the text is hidden automatically.

b) Handles key events that are generated when keys on the key-
board are pressed and released.

c) Displays a series of items from which the user may select one
or more items.

d) Is used to load images of various formats, including Portable
Network Graphics (PNG) format.

e) Layout manager that arranges components into five regions:
North, South, East, West, and Center.

f) Provides scrolling capabilities for a component.
g) Objects of subclasses of this type can have rollover icons that

appear when the mouse moves over such components in a
GUI.

h) Provides text instructions or information on a GUI.
i) Allows a JList user to select multiple items and those items

are not required to be contiguous.
j) Must define method itemStateChanged.
k) Layout manager that divides the container into a grid of

rows and columns.
l) A JButton generates this event type when the user presses

the button.
m) Superclass to most Swing components.
n) Generates an ItemEvent when clicked.
o) Layout manager that lays out components left to right in the

order in which they are added to the container.
p) Allows JList user to select contiguous items.
q) Maintains a set of virtual key-code constants that represent

every key on the keyboard.
r) Defines a set of common integer constants that are used

with many Swing components.

Prelab Activities Name:

Fill in the Blank

Chapter 11 GUI Components: Part 1 7

Name: Date:

Section:

Fill in the Blank

Fill in the blanks for each of the following statements:

19. JPasswordField method getPassword returns the password as a(n) .

20. A(n) manages the relationship between several JRadioButtons.

21. Class provides prepackaged dialog boxes for both input and output.

22. Swing GUI components are defined in package .

23. The Swing GUI components contain three state button types: , and .

24. Method specifies whether the user can modify the text in a JTextComponent.

25. JComponent method specifies the tooltip that is displayed when the user positions the mouse over
a lightweight GUI component.

26. JFrame method specifies what should happen when the user closes a JFrame.

27. Container method recomputes the container’s layout using the current layout manager for the
Container and the current set of displayed GUI components.

28. When the user types data into a JTextField or JPasswordField and presses the Enter key, an event of type
occurs.

Prelab Activities Name:

Short Answer

Chapter 11 GUI Components: Part 1 9

Name: Date:

Section:

Short Answer

Answer the following questions in the space provided. Your answers should be as concise as possible; aim for two
or three sentences.

29. What happens if you do not add a GUI component to a container?

30. What happens if you forget to register an event handler for a GUI component?

31. What happens when adding a component to a BorderLayout if you do not specify the region in which the
component should be placed?

Prelab Activities Name:

Short Answer

10 GUI Components: Part 1 Chapter 11

32. What happens when more than one component is added to a particular region in a BorderLayout?

33. What happens at execution time if an attempt is made to add a component to a container, but that compo-
nent has not yet been instantiated?

34. How is an anonymous inner class different from other inner classes?

Prelab Activities Name:

Programming Output

Chapter 11 GUI Components: Part 1 11

Name: Date:

Section:

Programming Output

For each of the given program segments, read the code and write the output in the space provided below each
program. [Note: Do not execute these programs on a computer.] For the following exercises, draw an approcxi-
mate representation of the GUI that appears when the program executes.

35. What does the GUI look like in the following application?

1 // ProgrammingOutput.java
2 import java.awt.FlowLayout;
3 import java.awt.GridLayout;
4 import javax.swing.JButton;
5 import javax.swing.JCheckBox;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JPanel;
9 import javax.swing.JTextField;

10
11 public class ProgrammingOutput extends JFrame
12 {
13 private JButton cancelJButton;
14 private JButton okJButton;
15 private JTextField inputJTextField;
16 private JLabel nameJLabel;
17 private JCheckBox firstNameJCheckBox;
18 private JCheckBox lastNameJCheckBox;
19 private JPanel checkJPanel;
20 private JPanel buttonJPanel;
21
22 // constructor sets up GUI
23 public ProgrammingOutput()
24 {
25 super("Input Name");
26
27 // build nameJPanel
28 nameJLabel = new JLabel("Type your name");
29 inputJTextField = new JTextField(20);
30 setLayout(new FlowLayout());
31 add(nameJLabel);
32 add(inputJTextField);
33
34 } // end ProgrammingOutput constructor
35 } // end class ProgrammingOutput

Prelab Activities Name:

Programming Output

12 GUI Components: Part 1 Chapter 11

Your answer:

36. What does the GUI look like after adding the following code segment is added at the end class Program-
mingOuput’s constructor in Programming Output Exercise 35?

Your answer:

1 // ProgrammingOutputTest.java
2 import java.awt.FlowLayout;
3 import javax.swing.JFrame;
4
5 public class ProgrammingOutputTest
6 {
7 // execute application
8 public static void main(String args[])
9 {

10 ProgrammingOutput application = new ProgrammingOutput();
11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 application.setSize(400, 150);
13 application.setVisible(true);
14 } // end main
15 } // end class ProgrammingOutputTest

1 // build checkJPanel
2 firstNameJCheckBox = new JCheckBox("First name");
3 lastNameJCheckBox = new JCheckBox("Last name");
4 checkJPanel = new JPanel();
5 checkJPanel.setLayout(new GridLayout(1 , 2));
6 checkJPanel.add(firstNameJCheckBox);
7 checkJPanel.add(lastNameJCheckBox);
8 add(checkJPanel);
9

Prelab Activities Name:

Programming Output

Chapter 11 GUI Components: Part 1 13

37. What does the GUI look like after adding the following code segment is added at the end class Program-
mingOuput’s constructor in Programming Output Exercises 35–36?

Your answer:

38. What does the GUI from Programming Output Exercises 35–37 look like if the following line of code is in-
serted after line 10 of ProgrammingOutputTest.java?

Your answer:

1 // build buttonJPanel
2 okJButton = new JButton("Ok");
3 cancelJButton = new JButton("Cancel");
4 buttonJPanel = new JPanel();
5 buttonJPanel.setLayout(new GridLayout(1, 2));
6 buttonJPanel.add(okJButton);
7 buttonJPanel.add(cancelJButton);
8 add(buttonJPanel);
9

1 application.setLayout(new FlowLayout(FlowLayout.LEFT, 10, 5));

Prelab Activities Name:

Programming Output

14 GUI Components: Part 1 Chapter 11

39. What does the GUI from Programming Output Exercises 35–37 look like if the following line of code is re-
places the line of code added to ProgrammingOutputTest.java in Programming Output Exercise 38?

Your answer:

1 application.setLayout(new FlowLayout(FlowLayout.RIGHT, 10, 5));

Prelab Activities Name:

Correct the Code

Chapter 11 GUI Components: Part 1 15

Name: Date:

Section:

Correct the Code

Determine if there is an error in each of the following program segments. If there is an error, specify whether it
is a logic error or a compilation error, circle the error in the program and write the corrected code in the space
provided after each problem. If the code does not contain an error, write “no error.” [Note: There may be more
than one error in each program segment.]

Assume the following template definition of classes CorrectTheCode and CorrectTheCodeTest. Note that all the
code in Correct the Code Exercises 40–42 should be placed starting at line 20 in the CorrectTheCode constructor.

1 // CorrectTheCode.java
2 import java.awt.BorderLayout;
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5
6 import javax.swing.JButton;
7 import javax.swing.JFrame;
8 import javax.swing.JTextArea;
9

10 public class CorrectTheCode extends JFrame
11 {
12 private JButton okJButton;
13 private JButton clearJButton;
14 private JTextArea contentJTextArea;
15
16 public CorrectTheCode()
17 {
18 super("CorrectTheCode");
19
20 /* all the code segments below will be inserted here */
21 } // end CorrectTheCode constructor
22 } // end class CorrectTheCode

1 // CorrectTheCodeTest.java
2 import javax.swing.JFrame;
3
4 public class CorrectTheCodeTest
5 {
6 // execute application
7 public static void main(String args[])
8 {
9 CorrectTheCode application = new CorrectTheCode();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.setSize(200, 200);
12 application.setVisible(true);
13 } // end main
14 } // end class CorrectTheCodeTest

Prelab Activities Name:

Correct the Code

16 GUI Components: Part 1 Chapter 11

40. The following code should create a JButton with the value OK and add it to the JFrame.

Your answer:

41. The following code segment should create a JButton with the value Clear and a JTextArea in which the
user is not allowed to type. The code segment should add these components to the JFrame.

Your answer:

1 okJButton = new JButton();
2 add(BorderLayout.CENTER);

1 clearJButton = new JButton();
2 add(BorderLayout.SOUTH);
3
4 contentJTextArea = new JTextArea("Type or Click", 1, 4);
5 contentJTextArea.setEditable();
6 add(BorderLayout.NORTH);

Prelab Activities Name:

Correct the Code

Chapter 11 GUI Components: Part 1 17

42. The following code should add ActionListeners to the OK and Clear buttons defined in Correct the Code
Exercises 40–41 and specify how to handle each button’s event with an anonymous inner class.

Your answer:

1 okayJButton.new ActionListener()
2 {
3 public void actionPerformed(Actionevent e)
4 {
5 contentJTextArea.setText("You clicked okay: ");
6 }
7 }
8
9 clearJButton.new ActionListener()

10 {
11 public void actionPerformed(Actionevent e)
12 {
13 contentJTextArea.setText("");
14 }
15 }

Chapter 11 GUI Components: Part 1 19

Lab Exercises

Name: Date:

Section:

Lab Exercise 1 — Guess Game

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into six parts:

1. Lab Objectives

2. Description of Problem

3. Sample Output

4. Program Template (Fig. L 11.1 and Fig. L 11.2)

5. Problem-Solving Tips

6. Follow-Up Questions and Activities

The program template represents a complete working Java program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the
program. Compare your output with the sample output provided. Then answer the follow-up questions. The
source code for the template is available at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 11 of Java How to Program: Sixth Edi-
tion. In this lab, you will practice:

• Designing a GUI.

• Processing events.

• Creating and manipulating GUI components.

The follow-up questions and activities also will give you practice:

• Using various GUI methods to manipulate components.

• Adding additional components to a GUI.

Problem Description
Write an application that plays “guess the number” as follows: Your application chooses the number to be
guessed by selecting an integer at random in the range 1–1000. The application then displays the following in a
label:

I have a number between 1 and 1000. Can you guess my number?
Please enter your first guess.

A JTextField should be used to input the guess. As each guess is input, the background color should change to
either red or blue. Red indicates that the user is getting “warmer,” and blue indicates that the user is getting “cold-
er.” A JLabel should display either "Too High" or "Too Low" to help the user zero in on the correct answer. When
the user gets the correct answer, "Correct!" should be displayed, and the JTextField used for input should be
changed to be uneditable. A JButton should be provided to allow the user to play the game again. When the
JButton is clicked, a new random number should be generated and the input JTextField changed to be editable.

Lab Exercises Name:

Lab Exercise 1 — Guess Game

20 GUI Components: Part 1 Chapter 11

Sample Output

Program Template

1 // Exercise 11.15 Solution: GuessGameFrame.java
2 // Guess the number
3 import java.awt.Color;
4 import java.awt.FlowLayout;
5 import java.awt.Graphics;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.util.Random;
9 import javax.swing.JFrame;

10 import javax.swing.JTextField;
11 import javax.swing.JLabel;
12 import javax.swing.JButton;
13
14 public class GuessGameFrame extends JFrame
15 {
16 private static Random generator = new Random();
17 private int number; // number chosen by application
18 private int guessCount; // number of guesses
19 private int lastDistance; // distance between last guess and number
20 private JTextField guessInputJTextField; // for guessing
21 private JLabel prompt1JLabel; // first prompt to user
22 private JLabel prompt2JLabel; // second prompt to user
23 private JLabel messageJLabel; // displays message of game status
24 private JButton newGameJButton; // creates new game
25 private Color background; // background color of application
26
27 // set up GUI and initialize values
28 public GuessGameFrame()
29 {
30 /* Write a line of code that calls the superclass constructor and sets the title
31 of this application to "Guessing Game" */
32
33 guessCount = 0; // initialize number of guesses to 0
34 background = Color.LIGHT_GRAY; // set background to light gray
35

Fig. L 11.1 | GuessGameFrame.java. (Part 1 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Guess Game

Chapter 11 GUI Components: Part 1 21

36 prompt1JLabel = new JLabel(
37 "I have a number between 1 and 1000."); // describe game
38 prompt2JLabel = new JLabel(
39 "Can you guess my number? Enter your Guess:"); // prompt user
40
41 guessInputJTextField = new JTextField(5); // to enter guesses
42 guessInputJTextField.addActionListener(new GuessHandler());
43 messageJLabel = new JLabel("Guess result appears here.");
44
45 /* Write a statement that creaters the "New Game" button */
46 newGameJButton.addActionListener(
47
48 new ActionListener() // anonymous inner class
49 {
50 public void actionPerformed(ActionEvent e)
51 {
52 /* Write code that resets the application to an appropriate state
53 to start a new game. Reset the background color to light gray,
54 set the JTextFields to their initial text, call method
55 theGame and repaint the GuessGame JFrame */
56 } // end method actionPerformed
57 } // end anonymous inner class
58); // end call to addActionListener
59
60 /* Write code that will set the layout of the container to a Flowlayout,
61 then add all the GUI components to the container */
62 theGame(); // start new game
63 } // end GuessGameFrame constructor
64
65 // choose a new random number
66 public void theGame()
67 {
68 /* Write a statement that sets instance variable number to a random number
69 between 1 and 1000 */
70 } // end method theGame
71
72 // change background color
73 public void paint(Graphics g)
74 {
75 super.paint(g);
76 getContentPane().setBackground(background); // set background
77 } // end method paint
78
79 // react to new guess
80 public void react(int guess)
81 {
82 guessCount++; // increment guesses
83 /* Write code that sets instance variable currentDistance to 1000. This
84 variable’s value will be used to determine if th ebackground color
85 should be set to red or blue to indicate that the last guess was getting
86 closer to or further from the actual number. */
87
88 // first guess
89 if (guessCount == 1)
90 {

Fig. L 11.1 | GuessGameFrame.java. (Part 2 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Guess Game

22 GUI Components: Part 1 Chapter 11

91 /* Write code to set instance variable lastDistance to the absolute value
92 of the difference between variables guess and number. This value will
93 be used with subsequent guesses to help set the background color. */
94
95 if (guess > number)
96 messageJLabel.setText("Too High. Try a lower number.");
97 else
98 messageJLabel.setText("Too Low. Try a higher number.");
99 } // end if
100 else
101 {
102 /* Write code that sets instance variable currentDistance to the absolute
103 value of the difference between variables guess and number. This
104 variable’s value will be compared with lastDistance to determine the
105 background color. */
106
107 // guess is too high
108 if (guess > number)
109 {
110 messageJLabel.setText("Too High. Try a lower number.");
111
112 /* Write code that sets Color variable background to red if the
113 currentDistance is less than or equal to lastDistance; otherwise,
114 set background to blue. Then assign currentDistance to lastDistance. */
115 } // end if
116 else if (guess < number) // guess is too low
117 {
118 messageJLabel.setText("Too Low. Try a higher number.");
119 background = (currentDistance <= lastDistance) ?
120 Color.RED : Color.BLUE;
121 lastDistance = currentDistance;
122 } // end else if
123 else // guess is correct
124 {
125 messageJLabel.setText("Correct!");
126
127 /* Write code that sets Color variable background to red if the
128 currentDistance is less than or equal to lastDistance; otherwise,
129 set background to blue. Then assign currentDistance to lastDistance. */
130 } // end else
131
132 repaint();
133 } // end else
134 } // end method react
135
136 // inner class acts on user input
137 class GuessHandler implements ActionListener
138 {
139 public void actionPerformed(ActionEvent e)
140 {
141 /* Write code that will obtain the guess, convert it to an int and
142 pass that value to the react method */
143 } // end method actionPerformed
144 } // end inner class GuessHandler
145 } // end class GuessGameFrame

Fig. L 11.1 | GuessGameFrame.java. (Part 3 of 3.)

Lab Exercises Name:

Lab Exercise 1 — Guess Game

Chapter 11 GUI Components: Part 1 23

Problem-Solving Tips
1. Use methods from the JTextField class to manipulate all JTextField components. For instance, meth-

od setText will set the text of the text field, and method setEditable will set whether the text field can
be edited or not.

2. Method setBackground from class JFrame sets the background color of the JFrame.

3. Use method nextInt from class Random to generate a random number from 1 to 1000. You will need
to scale the range of values produced by random by 1000 and shift the range by 1.

4. Use variables lastDistance and currentDistance to determine the distance of the guess from the ac-
tual number. If this distance gets larger between guesses, set the background color of the JFrame to blue.
If this distance gets smaller or stays the same, set the background color to red.

5. If you have any questions as you proceed, ask your lab instructor for assistance.

Follow-Up Questions and Activities
1. Modify the previous program to keep track of how many guesses the user has made, and display that number

in another JLabel in the JFrame.

2. Now modify the previous program so that there is another JLabel in the JFrame that contains the number
to be guessed, but does not become visible, until the user guesses the right number. In other words the JLa-
bel is always there, the user just can’t see it until the correct number is guessed. [Hint: use method setVis-

ible to show and hide the JLabel.]

1 // Exercise 11.15 Solution: GuessGame.java
2 // Guess the number
3 import javax.swing.JFrame;
4
5 public class GuessGame
6 {
7 public static void main(String args[])
8 {
9 GuessGameFrame guessGameFrame = new GuessGameFrame();

10 guessGameFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 guessGameFrame.setSize(300, 150); // set frame size
12 guessGameFrame.setVisible(true); // display frame
13 } // end main
14 } // end class GuessGame

Fig. L 11.2 | GuessGame.java.

Lab Exercises Name:

Lab Exercise 2 — Events

Chapter 11 GUI Components: Part 1 25

Name: Date:

Section:

Lab Exercise 2 — Events

This problem is intended to be solved in a closed-lab session with a teaching assistant or instructor present. The
problem is divided into five parts:

1. Lab Objectives

2. Description of Problem

3. Sample Output

4. Program Template (Fig. L 11.3 and Fig. L 11.4)

5. Problem-Solving Tips

The program template represents a complete working Java program, with one or more key lines of code replaced
with comments. Read the problem description and examine the sample output; then study the template code.
Using the problem-solving tips as a guide, replace the /* */ comments with Java code. Compile and execute the
program. Compare your output with the sample output provided. The source code for the template is available
at www.deitel.com and www.prenhall.com/deitel.

Lab Objectives
This lab was designed to reinforce programming concepts from Chapter 11 of Java How to Program: Sixth Edi-
tion. In this lab you will practice:

• Understanding when events occur and how they are generated.

• Displaying information about different events.

Problem Description
It is often useful to display the events that occur during the execution of an application. This can help you un-
derstand when the events occur and how they are generated. Write an application that enables the user to gen-
erate and process every event discussed in this chapter. The application should provide methods from the
ActionListener, ItemListener, ListSelectionListener, MouseListener, MouseMotionListener and Key-

Listener interfaces to display messages when the events occur. Use method toString to convert the event ob-
jects received in each event handler into a String that can be displayed. Method toString creates a String

containing all the information in the event object.

Lab Exercises Name:

Lab Exercise 2 — Events

26 GUI Components: Part 1 Chapter 11

Sample Output

Program Template

1 // Exercise 11.16 Solution: EventsFrame.java
2 // Program displays events that occur during execution.
3 import java.awt.Color;
4 import java.awt.BorderLayout;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import java.awt.event.ItemListener;
8 import java.awt.event.ItemEvent;
9 import java.awt.event.MouseListener;

10 import java.awt.event.MouseEvent;
11 import java.awt.event.MouseMotionListener;
12 import java.awt.event.KeyListener;
13 import java.awt.event.KeyEvent;
14 import javax.swing.JFrame;
15 import javax.swing.JPanel;
16 import javax.swing.JScrollPane;
17 import javax.swing.JTextArea;
18 import javax.swing.JComboBox;
19 import javax.swing.JRadioButton;
20 import javax.swing.JList;
21 import javax.swing.JButton;
22 import javax.swing.event.ListSelectionListener;
23 import javax.swing.event.ListSelectionEvent;
24
25 public class EventsFrame extends JFrame implements ActionListener,
26 ItemListener, MouseListener, MouseMotionListener,
27 KeyListener, ListSelectionListener
28 {
29 private JPanel panel1;
30 private JScrollPane scrollPane;
31 private JTextArea outputJTextArea;
32 private JComboBox comboBox;
33 private JRadioButton radioButton;
34 private JList list;
35 private JButton clearJButton;

Fig. L 11.3 | EventsFrame.java. (Part 1 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Events

Chapter 11 GUI Components: Part 1 27

36
37 private String names[] = {
38 "Anteater", "Caterpillar", "Centipede", "Fire Fly" };
39
40 // set up GUI and register event handlers
41 public EventsFrame()
42 {
43 super("Events");
44
45 // create GUI components
46 outputJTextArea = new JTextArea(10, 30);
47 outputJTextArea.setLineWrap(true);
48 outputJTextArea.setEditable(false);
49 outputJTextArea.setBackground(Color.WHITE);
50 outputJTextArea.setForeground(Color.BLACK);
51
52 // add the output area to a scroll pane
53 // so the user can scroll the output
54 /* Write a statement that attaches the output JTextArea to a JScrollPane */
55
56 // comboBox listens for item and key events
57 comboBox = new JComboBox(names);
58 /* Write a statement that registers an ItemListener for this JComboBox */
59 /* Write a statement that registers a KeyListener for this JComboBox */
60
61 // radioButton listens for action events
62 radioButton = new JRadioButton("Select Me", false);
63 /* Write a statement that registers an ActionListener for
64 this JRadioButton */
65
66 // list listens for list selection events
67 list = new JList(names);
68 list.addListSelectionListener(this);
69
70 // clear button for clearing the output area
71 clearJButton = new JButton("Clear");
72 clearJButton.addActionListener(
73 /* Write code that defines an anonymous inner class that
74 will clear the output JTextArea when the clear button is clicked */
75); // end call to addActionListener
76
77 // application listens to its own key and mouse events
78 /* Write code that registers a MouseListener
79 and a MouseMotionListener for the Events JFrame */
80
81 panel1 = new JPanel();
82 panel1.add(comboBox);
83 panel1.add(radioButton);
84 panel1.add(list);
85 panel1.add(clearJButton);
86
87 // add components to container
88 setLayout(new BorderLayout());
89 add(scrollPane, BorderLayout.CENTER);
90 add(panel1, BorderLayout.SOUTH);
91 } // end EventsFrame constructor

Fig. L 11.3 | EventsFrame.java. (Part 2 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Events

28 GUI Components: Part 1 Chapter 11

92
93 // ActionListener event handlers
94 /* Implement the ActionListener interface. Display the string representation
95 of each event that occurs in the output JTextArea */
96
97 // ItemListener event handlers
98 /* Implement the ItemListener interface. Display the string representation
99 of each event that occurs in the output JTextArea */
100
101 // MouseListener event handlers
102 /* Implement the MouseListener interface. Display the string representation
103 of each event that occurs in the output JTextArea */
104
105 // MouseMotionListener event handlers
106 /* Implement the MouseMotionListener interface. Display the string representation
107 of each event that occurs in the output JTextArea */
108
109 // KeyListener event handlers
110 /* Implement the KeyListener interface. Display the string representation
111 of each event that occurs in the output JTextArea */
112
113 // ListSelectionListener event handlers
114 /* Implement the ListSelectionListener interface. Display the string representation
115 of each event that occurs in the output JTextArea */
116
117 // display event occurred to output
118 public void display(String eventName, Object event)
119 {
120 outputJTextArea.append(String.format("%s occurred\n%S\n\n",
121 eventName, event.toString()));
122 } // end method display
123 } // end class EventsFrame

1 // Exercise 11.16 Solution: Events.java
2 // Program displays events that occur during execution.
3 import javax.swing.JFrame;
4
5 public class Events
6 {
7 public static void main(String args[])
8 {
9 EventsFrame eventsFrame = new EventsFrame(); // create EventsFrame

10 eventsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 eventsFrame.setSize(375, 325); // set frame size
12 eventsFrame.setVisible(true); // display frame
13 } // end main
14 } // end class Events

Fig. L 11.4 | Events.java.

Fig. L 11.3 | EventsFrame.java. (Part 3 of 3.)

Lab Exercises Name:

Lab Exercise 2 — Events

Chapter 11 GUI Components: Part 1 29

Problem-Solving Tips
1. The application itself should listen for all events except the clear button’s event. Register each listener

with this as the listener.

2. Every method of an interface must be defined in a class that implements that interface or else a compi-
lation error will occur. So, ensure that you define all the methods specified by the interfaces implement-
ed in this application.

3. In each event-handling method, you should append a string containing information about the event to
the output JTextArea.

4. Use method append from class JTextArea to display all the event information. Place newlines between
each event string to make the output easier to read.

5. If you have any questions as you proceed, ask your lab instructor for assistance.

Lab Exercises Name:

Debugging

Chapter 11 GUI Components: Part 1 31

Name: Date:

Section:

Debugging

The program in this section does not compile. Fix all the syntax errors so that the program will compile success-
fully. Once the program compiles, execute the program, and compare its output with the sample output; then
eliminate any logic errors that may exist. The sample output demonstrates what the program’s output should be
once the program’s code is corrected. The source code is available at www.deitel.com and at www.prenhall.com/
deitel.

Sample Output

Broken Code

1 // Debugging problem Chapter 11: Phone.java
2 // Program creates a GUI that resembles a phone with functionality.
3 import java.awt.BorderLayout;
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

10 import javax.swing.JTextArea;
11
12 public class Phone extends JFrame
13 {
14 private Jbutton keyJButton[];
15 private JPanel keyJPanel;
16 private JPanel lcdJPanel;
17 private JTextArea lcdJTextArea;
18 private String lcdOutput = "";
19 private int count;
20

Fig. L 11.5 | Phone.java. (Part 1 of 3.)

Lab Exercises Name:

Debugging

32 GUI Components: Part 1 Chapter 11

21 // constructor sets up GUI
22 public Phone()
23 {
24 super("Phone");
25
26 lcdJTextArea = new JTextArea(4, 15);
27 lcdJTextArea.setEditable(false);
28 lcdJPanel.add(lcdJTextArea);
29
30 keyJButton = new Jbutton[15];
31
32 // initialize all digit key Buttons
33 for (int i = 3; i <= 11; i++)
34 keyJButton[i] = new Jbutton(String.valueOf(i - 2));
35
36 // initialize all non-digit key Buttons
37 keyJButton[0] = new Jbutton("Send");
38 keyJButton[1] = new Jbutton("clr");
39 keyJButton[2] = new Jbutton("End");
40 keyJButton[12] = new Jbutton("*");
41 keyJButton[13] = new Jbutton("0");
42 keyJButton[14] = new Jbutton("#");
43
44 keyJButton[0].addActionListener(
45
46 public void actionPerformed(ActionEvent e)
47 {
48 lcdOutput = "Calling...\n\n" + lcdOutput;
49 lcdJTextArea.setText(lcdOutput);
50 } // end method actionPerformed
51 } // end new ActionListener
52) // end addActionListener call
53
54 keyJButton[1].addActionListener(
55
56 new ActionListener()
57 {
58 public void actionPerformed(ActionEvent e)
59 {
60 if (lcdOutput.length() == 0 ||
61 lcdOutput.substring(0, 1).equals("C"))
62 return;
63 else
64 {
65 lcdOutput = lcdOutput.substring(0, (lcdOutput.length() - 1));
66 lcdJTextArea.setText(lcdOutput);
67 } // end else
68 } // end method actionPerformed
69 } // end object ActionLstener
70); // end addActionListener call
71

Fig. L 11.5 | Phone.java. (Part 2 of 3.)

Lab Exercises Name:

Debugging

Chapter 11 GUI Components: Part 1 33

72 keyJButton[2].addActionListener(
73
74 new ActionListener()
75 {
76 public void actionPerformed(ActionEvent e)
77 {
78 lcdJTextArea.setText(" ");
79 lcdOutput = "";
80 } // end method actionPerformed
81 } // end new ActionListener
82); // end ActionListener call
83
84 for (int i = 3; i <= 14; i++)
85 {
86 keyJButton[i].addActionListener(
87
88 new ActionListener()
89 {
90 public void actionPerformed(ActionEvent e)
91 {
92 lcdOutput += e.getActionCommand();
93
94 if (lcdOutput.substring(0, 1).equals("C"))
95 return;
96
97 lcdJTextArea.append(e.getActionCommand());
98 } // end method actionPerformed
99 } // end new ActionListener
100); // end addActionListener call
101 } // end for loop
102
103 // set keyJPanel layout to grid layout
104 keyJPanel = new JPanel();
105 keyJPanel.setLayout(new GridLayout(5, 3));
106
107 // add buttons to keyJPanel
108 for (int i = 0; i <= 14; i++)
109 keyJPanel.add(keyJButton[i]);
110
111 // add components to container
112 add(lcdOutput, BorderLayout.NORTH);
113 } // end Phone constructor
114 } // end class Phone

1 // Debugging problem Chapter 11: PhoneTest.java
2 // Program creates a GUI that resembles a phone with functionality.
3 import javax.swing.JFrame;
4
5 public class PhoneTest
6 {
7 // execute application
8 public static void main(String args[])
9 {

10 Phone application = new Phone();

Fig. L 11.6 | PhoneTest.java. (Part 1 of 2.)

Fig. L 11.5 | Phone.java. (Part 3 of 3.)

Lab Exercises Name:

Debugging

34 GUI Components: Part 1 Chapter 11

11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 application.setSize(200, 300);
13 application.setVisible(true);
14 } // end main
15 } // end class PhoneTest

Fig. L 11.6 | PhoneTest.java. (Part 2 of 2.)

Chapter 11 GUI Components: Part 1 35

Postlab Activities

Name: Date:

Section:

Coding Exercises

These coding exercises reinforce the lessons learned in the lab and provide additional programming experience
outside the classroom and laboratory environment. They serve as a review after you have successfully completed
the Prelab Activities and Lab Exercises.

The following application tests class CodingExercise that you will create and enhance in Coding Exercises 1–4.

1. Create the following GUI (you will provide functionality later): The GUI consists of three JLists: two that
contain the numbers 0–9, and one that contains three operations (+, - and *). The GUI should also contain
a JButton with the label "Calculate" and a JTextField. Each JList should also be contained in a JScroll-
Pane. The window shown is separated into two JPanels — the top one contains the three JScrollPanes in
a GridLayout, and the bottom one contains the "Calculate" button and the JTextField in a BorderLay-

out. You may space and size all the components as you like.

1 // CodingExerciseTest.java
2 import javax.swing.JFrame;
3
4 public class CodingExerciseTest
5 {
6 public static void main(String args[])
7 {
8 CodingExercise window = new CodingExercise();
9 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10 window.setSize(250, 200);
11 window.setVisible(true);
12 } // end main
13 } // end class CodingExerciseTest

Postlab Activities Name:

Coding Exercises

36 GUI Components: Part 1 Chapter 11

2. Modify the program from Coding Exercise 1 such that each JList is set to SINGLE_SELECTION.

3. Modify the program from Coding Exercise 2 by adding an ActionListener to the "Calculate" button.
When the button is pressed, it should retrieve the values from the three lists and display the calculated value
in the JTextField (e.g., if "1", "+" and "2" are selected in the lists, then the JTextField should display "1
+ 2 = 3").

4. Modify the program from Coding Exercise 3 so that, when the user clicks the "Calculate" button, the pro-
gram ensures that the user selected a value from each list. If not, the program should display a message telling
the user that an item must be selected from each list.

Postlab Activities Name:

Programming Challenges

Chapter 11 GUI Components: Part 1 37

Name: Date:

Section:

Programming Challenges

The Programming Challenges are more involved than the Coding Exercises and may require a significant amount
of time to complete. Write a Java program for each of the problems in this section. The answers to these problems
are available at www.deitel.com and www.prenhall.com/deitel. Pseudocode, hints or sample outputs are pro-
vided for each problem to aid you in your programming.

1. Create the following GUI. You do not have to provide any functionality.

Hints:

• Your application should use JPanels to arrange the GUI components.

• You will need to use multiple layout managers to properly set up the JPanels.

2. Enhance the temperature conversion application of Exercise 11.12 by adding the Kelvin temperature scale.
The application should also allow the user to make conversions between any two scales. Use the following
formula for the conversion between Kelvin and Celsius (in addition to the formula in Exercise 11.12):

Kelvin = Celsius + 273.15

Hints:

• Your application should use JPanels to arrange the GUI components.

• First set up the layout with no functionality (i.e., just the look and feel of the application.)

• Next add functionality to the application: Add listeners to all the tool components and a mouse listener
for the window.

• To convert from Fahrenheit to Kelvin, first convert from Fahrenheit to Celsius, then convert from Cel-
sius to Kelvin.

	©: © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

